Applied Biochemistry and Biotechnology

, Volume 170, Issue 6, pp 1503–1524 | Cite as

Synthetic 2,3-Butanediol Pathway Integrated Using Tn7-tool and Powered Via Elimination of Sporulation and Acetate Production in Acetogen Biocatalyst

  • Michael Tyurin
  • Michael Kiriukhin


Acetogen Clostridium sp. MT1802 originally producing 336-mM acetate from inorganic carbon of CO2/CO was engineered to eliminate acetate production and sporulation using Cre-lox66/lox71-approach. The recombinant started producing 105-mM formate expressing synthetic formate dehydrogenase integrated in two copies. Formate-producing recombinant was further engineered to express synthetic formate acetyltransferase, acetolactate synthase, acetolactate decarboxylase, and alcohol dehydrogenase integrated in two copies each using Tn7 tool. The resulted recombinant started producing 102-mM 2,3-butanediol (23BD). 23BD production was confirmed in five independent single step fermentation runs 25 days long each in five repeats using syngas blend 60 % CO and 40 % H2 (v/v) (p <0.005). 23BD production was 78 % if only CO2/H2 blend was fed instead of syngas (p <0.005). 23BD from CO2/H2 blend might serve as a commercial route to mitigate global warming in proportion to CO2 fermentation scale worldwide.


Acetogens Formate 2,3-butanediol CO2 Fermentation Tn7-based Gene Integration 



The research was supported by the funds of angel friends of MT family. Syngas Biofuels Energy, Inc. and its successors are the sole distributors of the electroporation and electrofusion equipment:

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Young, K. D. (2006). The selective value of bacterial shape. Microbiology and Molecular Biology Reviews, 70(3), 660–703. doi: 10.1128/MMBR.00001-06.CrossRefGoogle Scholar
  2. 2.
    Berzin, V., Kiriukhin, M., & Tyurin, M. (2012). Selective production of acetone during continuous synthesis gas fermentation by engineered biocatalyst Clostridium sp. MAceT113. Letters in Applied Microbiology, 55, 149–154. doi: 10.1111/j.1472-765X.2012.03272.x.CrossRefGoogle Scholar
  3. 3.
    Tyurin, M., & Kiriukhin, M. (2013). Ethanol overproduction during continuous syngas fermentation due to expression of amplified ethanol biosynthesis pathway integrated using Tn7-tool and powered at the expense of eliminated acetic acid production and spore formation. Journal of Applied Microbiology. doi: 10.1111/jam.12123.Google Scholar
  4. 4.
    Demain, A. L. (2009). Biosolutions to the energy problem. Journal of Industrial Microbiology and Biotechnology, 36(3), 319–332.CrossRefGoogle Scholar
  5. 5.
    Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Selection and optimization of microbial hosts for biofuels production. Metabolic Engieneering, 10(6), 295–304.CrossRefGoogle Scholar
  6. 6.
    Köpke, M., Michalcea, C., Liew, F.-M., Tizard, J. H., Ali, M. S., Conolly, J. J., et al. (2011). 2, 3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Applied and Environmental Microbiology, 77(15), 5467–5475.CrossRefGoogle Scholar
  7. 7.
    Abubackar, H. N., Veiga, M. C., & Kennes, C. (2012). Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract. Bioresource Technology, 114, 518–522.CrossRefGoogle Scholar
  8. 8.
    Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering, 10(6), 295–304.CrossRefGoogle Scholar
  9. 9.
    Gaddy, J. L., Arora, D. D., Ko, C.-W., Phillips, J. R., Basu, R., Wikstrom, C. V., Clausen, E. C. (2001). Methods for increasing the production of ethanol from microbial fermentation. US Patent 7285402.Google Scholar
  10. 10.
    Ma, C., Wang, A., Qin, J., Li, L., Ai, X., Jiang, T., et al. (2009). Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Applied Microbiology and Biotechnology, 82(1), 49–57. doi: 10.1007/s00253-008-1732-7.CrossRefGoogle Scholar
  11. 11.
    Celińska, E., & Grayek, W. (2009). Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnology Advances, 27, 715–725.CrossRefGoogle Scholar
  12. 12.
    Xiu, Z. L., & Zeng, A. P. (2008). Present state and perspectives of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Applied Microbiology and Biotechnology, 78, 917–926.CrossRefGoogle Scholar
  13. 13.
    Ji, X. J., Huang, H., & Ouyang, P. K. (2011). Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnology Advances, 29, 351–364.CrossRefGoogle Scholar
  14. 14.
    Oliver, J. W., Machado, I. M., Yoneda, H., & Atsumi, S. (2013). Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proceedings of the National Academy of Sciences U S A, 110(4), 1249–1254. doi: 10.1073/pnas.1213024110.CrossRefGoogle Scholar
  15. 15.
    Drake, H. L. (1994). Acetogenesis. NY, London: Chapman & Hall.Google Scholar
  16. 16.
    Berzin, V., Kiriukhin, M., & Tyurin, M. (2012). Cre-lox66/lox71-based elimination of phosphotransacetylase or acetaldehyde dehydrogenase shifted carbon flux in acetogen rendering selective overproduction of ethanol or acetate. Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-012-9864-8.Google Scholar
  17. 17.
    Craig, N. L. (1991). Micro Review. Tn7: a target site-specific transposon. Molecular Microbiology, 5(11), 2569–2573.CrossRefGoogle Scholar
  18. 18.
    Tanner, R. S., Miller, L. M., & Yang, D. (1993). Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. International Journal of Systemic Bacteriology, 43(2), 232–236.CrossRefGoogle Scholar
  19. 19.
    Tyurin, M., Lynd, L. R., & Wiegel, J. (2006). Genetic delivery systems for strictly anaerobic thermophiles. In F. A. Rainey & A. Oren (Eds.), Methods in Microbiology (1st ed., Vol. 35, pp. 307–328). Amsterdam: Elsevier, Academic Press.Google Scholar
  20. 20.
    Berzin, V., Kiriukhin, M., & Tyurin, M. (2013). Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase and NAD-dependent butanol dehydrogenase. Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-012-0060-7.Google Scholar
  21. 21.
    Tyurin, MV. (1992). The method and apparatus for electric cell treatment using partial power capacitor discharge via the sample and the power tetrode. Russian Patent 2005776.Google Scholar
  22. 22.
    Tyurin, M., Desai, S., & Lynd, L. (2004). Electrotransformation of Clostridium thermocellum. Applied and Environmental Microbiology, 70(2), 883–890.CrossRefGoogle Scholar
  23. 23.
    Tyurin, M. V., Sullivan, C. R., & Lynd, L. R. (2005). Induced oscillations play an important role in high efficiency transformation of thermophilic anaerobes. Applied and Environmental Microbiology, 71, 8069–8076.CrossRefGoogle Scholar
  24. 24.
    Tyurin, M., Kiriukhin, M., & Berzin, V. (2012). Electrofusion of cells of acetogen Clostridium sp. MT351 with erm(B) or cat in the chromosome. Journal of Biotech Research, 4, 1–12.Google Scholar
  25. 25.
    Berzin, V., & Tyurin, M. (2012). Acetogen biocatalyst Clostridium sp. MTEtOH871 engineered with our proprietary electrotransformation technology and equipment: continuous synthesis gas fermentation for selective ethanol production. Journal of Biotech Research, 4, 54–64.Google Scholar
  26. 26.
    Leibig, M., Krismer, B., Kolb, M., Friede, A., Götz, F., & Bertram, R. (2008). Marker removal in staphylococci via Cre recombinase and different lox sites. Applied and Environmental Microbiology, 74(5), 1316–1323.CrossRefGoogle Scholar
  27. 27.
    Shepherd, C. T., Moran, L. A. N., & Scott, M. P. (2009). Determination of transgene copy number by real-time quantitative PCR. Methods in Molecular Biology, 526, 129–134. doi: 10.1007/978-1-59745-494-0_11.CrossRefGoogle Scholar
  28. 28.
    Ross, S. M. (2000). Introduction to probability and statistics for engineers and scientists (2nd ed.). San Diego: Academic.Google Scholar
  29. 29.
    Volker, M. (2003). Energy conservation in acetogenic bacteria. Applied and Environmental Microbiology, 69(11), 6345–6353. doi: 10.1128/AEM.69.11.6345-6353.2003.CrossRefGoogle Scholar
  30. 30.
    Wang, A., Xu, Y., Ma, C., Gao, C., Li, L., Wang, Y., et al. (2012). Efficient 2,3-Butanediol Production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS One, 7(7), e40442. doi: 10.1371/journal.pone.0040442.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Syngas Biofuels Energy, Inc.HoustonUSA
  2. 2.Ajinomoto-Genetika Research InstituteMoscowRussia

Personalised recommendations