Skip to main content
Log in

Insights into Molecular Assembly of ACCase Heteromeric Complex in Chlorella variabilis—A Homology Modelling, Docking and Molecular Dynamic Simulation Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Acetyl-CoA carboxylase (ACCase), a biotin-dependent enzyme that catalyses the first committed step of fatty acid biosynthesis, is considered as a potential target for improving lipid accumulation in oleaginous feedstocks, including microalgae. ACCase is composed of three distinct conserved domains, and understanding the structural details of each catalytic domain assumes great significance to gain insights into the molecular basis of the complex formation and mechanism of biotin transport. In the absence of a crystal structure for any single heteromeric ACCase till date, here we report the first heteromeric association model of ACCase from an oleaginous green microalga, Chlorella variabilis, using a combination of homology modelling, docking and molecular dynamic simulations. The binding site of the docked biotin carboxylase (BC) and carboxyltransferase (CT) were predicted to be contiguous but distinct in biotin carboxyl carrier protein (BCCP) molecule. Simulation studies revealed considerable flexibility for the BC and CT domains in the BCCP-bound forms, thus indicating the adaptive behaviour of BCCP. Further, principal component analysis revealed that in the presence of BCCP, the BC and CT domains exhibited an open-state conformation via the outward clockwise rotation of the binding helices. These conformational changes might be responsible for binding of BCCP domain and its translocation to the respective active sites. Various rearrangements of inter-domain hydrogen bonds (H-bonds) contributed to conformational changes in the structures. H-bond interactions between the interacting residue pairs involving Glu201BCCP/Arg255BC and Asp224BCCP/Gln228CT were found to be essential for the intermolecular assembly. The present findings are consistent with previous biochemical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Podkowinski, J., & Tworak, A. (2011). BioTechnologia - Journal of Biotechnology, Computational Biology and Bionanotechnology, 92, 321–335.

  2. Klaus, D., Ohlrogge, J. B., Neuhaus, H. E., & Dormann, P. (2004). Planta, 219, 389–396.

    Article  CAS  Google Scholar 

  3. Roesler, K., Shintani, D., Savage, L., Boddupalli, S., & Ohlrogge, J. (1997). Plant Physiology, 113, 75–81.

    Article  CAS  Google Scholar 

  4. Wan, M., Liu, P., Xia, J., Rosenberg, J. N., Oyler, G. A., Betenbaugh, M. J., et al. (2011). Applied Microbiology and Biotechnology, 91, 835–844.

    Article  CAS  Google Scholar 

  5. Huerlimann, R., & Heimann, K. (2012). Critical Reviews in Biotechnology, 1–17.

  6. Zhu, X. L., Yang, W. C., Yu, N. X., Yang, S. G., & Yang, G. F. (2011). Journal of Molecular Modeling, 17, 495–503.

    Article  CAS  Google Scholar 

  7. Zhu, X. L., & Yang, G. F. (2012). Current Computer-Aided Drug Design, 8, 62–69.

    Article  CAS  Google Scholar 

  8. Zhu, X. L., Zhang, L., Chen, Q., Wan, J., & Yang, G. F. (2006). Journal of Chemical Information and Modeling, 46, 1819–1826.

    Article  CAS  Google Scholar 

  9. Zhu, X. L., Fei, H. G., Zhan, C. G., & Yang, G. F. (2009). Journal of Chemical Information and Modeling, 49, 1936–1943.

    Article  CAS  Google Scholar 

  10. Tong, L. (2005). Cellular and Molecular Life Sciences, 62, 1784–1803.

    Article  CAS  Google Scholar 

  11. Diacovich, L., Mitchell, D. L., Pham, H., Gago, G., Melgar, M. M., Khosla, C., et al. (2004). Biochemistry, 43, 14027–14036.

    Article  CAS  Google Scholar 

  12. Athappilly, F. K., & Hendrickson, W. A. (1995). Structure, 3, 1407–1419.

    Article  CAS  Google Scholar 

  13. Waldrop, G. L., Rayment, I., & Holden, H. M. (1994). Biochemistry, 33, 10249–10256.

    Article  CAS  Google Scholar 

  14. Cho, C. Y., Yu, L. P., & Tong, L. (2009). Journal of Biological Chemistry, 284, 11690–11697.

    Article  Google Scholar 

  15. Bilder, P., Lightle, S., Bainbridge, G., Ohren, J., Finzel, B., Sun, F., et al. (2006). Biochemistry, 45, 1712–1722.

    Article  CAS  Google Scholar 

  16. Mochalkin, I., Miller, J. R., Evdokimov, A., Lightle, S., Yan, C., Stover, C. K., et al. (2008). Protein Science, 17, 1706–1718.

    Article  CAS  Google Scholar 

  17. Polyak, S. W., Abell, A. D., Wilce, M. C. J., Zhang, L., & Booker, G. W. (2012). Applied Microbiology and Biotechnology, 93, 983–992.

    Article  CAS  Google Scholar 

  18. Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., & Sali, A. (2012). Annual Reviews of Biophysics and Biomolecular Structures, 29, 291–325.

    Article  Google Scholar 

  19. Smith, G. R., & Sternberg, M. J. E. (2002). Current Opinion in Structural Biology, 12, 28–35.

    Article  Google Scholar 

  20. Lietzan, A. D., Menefee, A. L., Zeczycki, T. N., Kumar, S., Attwood, P. V., Wallace, J. C., et al. (2011). Biochemistry, 50, 9708–9723.

    Article  CAS  Google Scholar 

  21. Jitrapakdee, S., & Wallace, J. C. (2003). Current Protein & Peptide Science, 4, 217–229.

    Article  CAS  Google Scholar 

  22. Misra, N., & Panda, P. K. (2013). OMICS: A Journal of Integrative Biology, 17, 173–186.

    Article  CAS  Google Scholar 

  23. Baral, M., Misra, N., Panda, P. K., & Thirunavoukkarasu, M. (2012). Biotechnology and Biotechnological Equipment, 26, 2794–2800.

    Article  CAS  Google Scholar 

  24. Misra, N., Patra, M. C., Panda, P. K., Sukla, L. B., & Mishra, B. K. (2013). Journal of Biomolecular Structure and Dynamics, 31, 241–257.

    Article  CAS  Google Scholar 

  25. Blatti, J. L., Beld, J., Behnke, C. A., Mendez, M., Mayfield, S. P., & Burkart, M. D. (2012). PLoS One, 7, 1–12.

    Article  Google Scholar 

  26. Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Eukaryotic Cell, 9, 486–501.

    Article  CAS  Google Scholar 

  27. Yu, W. L., Ansari, W., Schoepp, N. G., Hannon, M. J., Mayfield, S. P., & Burkart, M. D. (2011). Microbial Cell Factories, 10, 91–102.

    Article  CAS  Google Scholar 

  28. Sali, A., & Blundell, T. L. (1993). Journal of Molecular Biology, 234, 779–815.

    Article  CAS  Google Scholar 

  29. Katoh, K., Kuma, K., Toh, H., & Miyata, T. (2005). Nucleic Acids Research, 33, 511–518.

    Article  CAS  Google Scholar 

  30. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  31. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., et al. (1998). Journal of Computational Chemistry, 19, 1639–1662.

    Article  CAS  Google Scholar 

  32. Wang, Y., Bolton, E., Dracheva, S., Karapetyan, K., Shoemaker, B. A., Suzek, T. O., et al. (2010). Nucleic Acids Research, 38, D255–D266.

    Article  CAS  Google Scholar 

  33. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). Nucleic Acids Research, 33, 363–367.

    Article  Google Scholar 

  34. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). Journal of Computational Chemistry, 26, 1701–1718.

    Article  Google Scholar 

  35. Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). Journal of Computational Chemistry, 25, 1656–1676.

    Article  CAS  Google Scholar 

  36. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Journal of Chemical Physics, 81, 3684–3690.

    Article  CAS  Google Scholar 

  37. Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). Journal of Computational Chemistry, 18, 1463–1472.

    Article  CAS  Google Scholar 

  38. Darden, T., York, D., & Pedersen, L. (1993). Journal of Chemical Physics, 98, 10089–10092.

    Article  CAS  Google Scholar 

  39. Schuttelkopf, A. W., & van Aalten, D. M. (2004). Acta Crystallographica Section D: Biological Crystallography, 60, 1355–1363.

    Article  Google Scholar 

  40. Humphrey, W., Dalke, A., & Schulten, K. (1996). Journal of Molecular Graphics, 14, 33–38.

    Article  CAS  Google Scholar 

  41. Yang, L. W., Eyal, E., Bahar, I., & Kitao, A. (2009). Bioinformatics, 25, 606–614.

    Article  CAS  Google Scholar 

  42. Lauria, A., Ippolito, M., & Almerico, A. M. (2009). Computational Biology and Chemistry, 33, 386–390.

    Article  CAS  Google Scholar 

  43. Laskowiski, R. A., Mac Arthur, M. W., Moss, D. S., & Thornton, J. M. (1993). Journal of Applied Crystallography, 26, 283–291.

    Article  Google Scholar 

  44. Benkert, P., Kunzli, M., & Schwede, T. (2009). Nucleic Acids Research, 37, W510–W514.

    Article  CAS  Google Scholar 

  45. Wiederstein, M., & Sippl, M. J. (2007). Nucleic Acids Research, 35, W407–W410.

    Article  Google Scholar 

  46. Eisenberg, D., Luthy, R., & Bowle, J. U. (1997). Methods in Enzymology, 277, 396–404.

    Article  CAS  Google Scholar 

  47. Colovos, C., & Yeates, T. O. (1993). Protein Science, 2, 1511–1519.

    Article  CAS  Google Scholar 

  48. Benkert, P., Tosatto, S. C., & Schomburg, D. (2008). Proteins, 71, 261–277.

    Article  CAS  Google Scholar 

  49. Galperin, M. Y., & Koonin, E. V. (1997). Protein Science, 6, 2639–2643.

    Article  CAS  Google Scholar 

  50. Climent, I., & Rubio, V. (1986). Archives of Biochemistry and Biophysics, 251, 465–470.

    Article  CAS  Google Scholar 

  51. Fan, C., Moews, P. C., Walsh, C. T., & Knox, J. R. (1994). Science, 266, 439–443.

    Article  CAS  Google Scholar 

  52. Hara, T., Kato, H., Katsube, Y., & Oda, J. (1996). Biochemistry, 35, 11967–11974.

    Article  CAS  Google Scholar 

  53. Thoden, J. B., Wesenberg, G., Raushel, F. M., & Holden, H. M. (1999). Biochemistry, 38, 2347–2357.

    Article  CAS  Google Scholar 

  54. Thoden, J. B., Firestine, S., Nixon, A., Benkovic, S., & Holden, H. M. (2000). Biochemistry, 39, 8791–8802.

    Article  CAS  Google Scholar 

  55. Thoden, J. B., Blanchard, C. Z., Holden, H. M., & Waldrop, G. L. (2000). Journal of Biological Chemistry, 275, 16183–16190.

    Article  CAS  Google Scholar 

  56. Kondo, S., Nakajima, Y., Sugio, S., Yong-Biao, J., Sueda, S., & Kondo, H. (2004). Acta Crystallographica, D60, 486–492.

    CAS  Google Scholar 

  57. Post, L. E., Post, D. J., & Raushel, F. M. (1990). Journal of Biological Chemistry, 265, 7742–7747.

    CAS  Google Scholar 

  58. Reinstein, J., Brune, M., & Wittenghofer, A. (1988). Biochemistry, 27, 4712–4720.

    Article  CAS  Google Scholar 

  59. Saraste, M., Sibbald, P. R., & Wittinghofer, A. (1990). Trends in Biochemical Sciences, 15, 430–434.

    Article  Google Scholar 

  60. Cronan, J. E., & Waldrop, G. L. (2002). Progress in Lipid Research, 41, 407–435.

    Article  CAS  Google Scholar 

  61. Samols, D., Thornton, C. G., Murtif, V. L., Kumar, G. K., Haase, F. C., & Wood, H. G. (1988). Journal of Biological Chemistry, 263, 6461–6464.

    CAS  Google Scholar 

  62. Toh, H., Kondo, H., & Tanabe, T. (1993). European Journal of Biochemistry, 215, 687–696.

    Article  CAS  Google Scholar 

  63. Pal, D., & Chakrabati, P. (2002). Biopolymers, 63, 195–206.

    Article  CAS  Google Scholar 

  64. Gunasekaran, K., Ramakrishnan, C., & Balaram, P. (1996). Journal of Molecular Biology, 264, 191–198.

    Article  CAS  Google Scholar 

  65. Thelen, J. J., Mekhedov, S., & Ohlrogge, J. B. (2001). Plant Physiology, 125, 2016–2028.

    Article  CAS  Google Scholar 

  66. Fall, R. R., Glaser, M., & Vagelos, P. R. (1976). Journal of Biological Chemistry, 251, 2063–2069.

    CAS  Google Scholar 

  67. Holden, H. M., Benning, M. M., Haller, T., & Gerlt, J. A. (2001). Accounts of Chemical Research, 34, 145–157.

    Article  CAS  Google Scholar 

  68. Kozaki, A., Mayumi, K., & Sasaki, Y. (2001). Journal of Biological Chemistry, 276, 39919–39925.

    Article  CAS  Google Scholar 

  69. Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Proteins: Structure Function, and Bioinformatics, 17, 412–425.

    Article  CAS  Google Scholar 

  70. Garcia, A. E. (1992). Physical Review Letters, 68, 2696–2699.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Department of Biotechnology, Government of India. N.M. acknowledges the support of the Council for Scientific and Industrial Research, India for granting Senior Research Fellowship. Technical help rendered by Mr. Bikram Kumar Parida in preparation of the figures is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna Kumar Panda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Multiple sequence alignment of selected BC homologs from Chlorella variabilis (Cv, E1Z54P), Escherichia coli (Ec, P24182), Staphylococcus aureus (Sa, Q99TW7), Cyanidioschyzon merolae (Cm, CMS299C), Arabidopsis thaliana (At, O04983), Brassica napus (Bn, D9I767), Ricinus communis (Rc, B9S1E2), Jatropha curcas (Jc, F2WMV4), Glycine max (Gm, O23960), Arachis hypogaea (Ah, E6Y6R4), Elaeis guineinsis (Eg, D2CFM8), and Volvox carteri (Vc, D8UF54). ‘▼’ indicates amino acids lying within 4 Å of bound ATP. ‘*’ denotes conserved amino acids in all sequences. The residues of the P-loop region are boxed. The color code for the residues and the conservation of pattern follows the Clustal program (JPEG 79 kb)

High resolution image (TIFF 371 kb)

Fig. S2

Multiple sequence alignment of the biotinyl domain of BCCP homologs from Chlorella variabilis (Cv, E1Z723), Volvox carteri (Vc, D8U256), Chlamydomonas reinhardtii (Cr, A8JDA7), Anabaena variabilis (Av, Q3WAQ4), Ricinus communis (Rc, B9RM56), Jatropha curcas (Jc, F2WMV5), Glycine max (Gm, Q42783), Arabidopsis thaliana (At, F4KE21), Brassica napus (Bn, G4WXD7), Arachis hypogaea (Ah, E6Y6R2), Escherichia coli (Ec, P0ABD8), and Cyanidioschyzon merolae (Cm, CMV134C). ‘▼’ indicates the core hydrophobic residues. ‘●’ indicates residues involved in binding to BC domain. ‘’ indicates residues involved in binding to CT domain. ‘*’ denotes conserved amino acids in all sequences. The residues of the thumb regions are boxed. The color code for the residues and the conservation of pattern follows the Clustal program (JPEG 12 kb)

High resolution image (TIFF 436 kb)

Fig. S3

Multiple sequence alignment of the Zinc domain present in β subunit of CT homologs from Chlorella variabilis (Cv, F2YGI4), Chlamydomonas reinhardtii (Cr, A8JHU1), Volvox carteri (Vc, D8U455), Anabaena variabilis (Av, Q3MGS5), Cyanidioschyzon merolae (Cm, CMV207C), Arabidopsis thaliana (At, P56765), Brassica napus (Bn, G4XGU6), Glycine max (Gm, P49158), Ricinus communis (Rc, G1D767), and Escherichia coli (Ec, D3QL09). The conserved Cysteine residues of ‘Zinc ribbon motif’ is indicated by ‘*’. The color code for the residues and the conservation of pattern follows the Clustal program (JPEG 4 kb)

High resolution image (TIFF 128 kb)

Fig. S4

ERRAT plot for the models. a BC domain. b BCCP domain. c α subunit of CT domain. d β subunit of CT domain. The ‘overall quality factor’ indicates the percentage of the protein for which the calculated error value falls below the 95 % rejection limit, respectively. (JPEG 30 kb)

High resolution image (TIFF 399 kb)

Fig. S5

PROSA plot showing the location of the Z-score for the models. a BC domain. b BCCP domain. c α subunit of CT domain. d β subunit of CT domain. The calculated Z-score for all the developed models are in the range of experimentally determined protein structure present in PDB (JPEG 18 kb)

High resolution image (TIFF 168 kb)

Fig. S6

PROSA energy plot for the models. a BC domain. b BCCP domain. c α subunit of CT domain. d β subunit of CT domain. The plot signifies the local model quality by plotting energies as a function of amino acid sequence where positive values indicate erroneous parts. Overall, the residue energies of all the models are largely negative (JPEG 17 kb)

High resolution image (TIFF 209 kb)

Fig. S7

Ramachandran plot for the models. a BC domain. b BCCP domain. c α subunit of CT domain. d β subunit of CT domain. The most favoured, additional allowed, generously allowed and disallowed regions are represented in red, deep yellow, light yellow, and white, respectively (JPEG 48 kb)

High resolution image (TIFF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, N., Panda, P.K., Patra, M.C. et al. Insights into Molecular Assembly of ACCase Heteromeric Complex in Chlorella variabilis—A Homology Modelling, Docking and Molecular Dynamic Simulation Study. Appl Biochem Biotechnol 170, 1437–1457 (2013). https://doi.org/10.1007/s12010-013-0277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0277-0

Keywords

Navigation