Skip to main content
Log in

Chestnut Shell as Unexploited Source of Fermentable Sugars: Effect of Different Pretreatment Methods on Enzymatic Saccharification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chestnut shell (CS) is an agronomic residue mainly used for extraction of antioxidants or as adsorbent of metal ions. It also contains some polysaccharide that has not been considered as potential source of fermentable sugars for biofuel production until now. In this study, the effect of different pretreatment methods on CS was evaluated in order to obtain the greatest conversion of cellulose and xylan into fermentable sugars. Hot acid impregnation, steam explosion (acid-catalysed or not), and aqueous ammonia soaking (AAS) were selected as pretreatments. The pretreated biomass was subjected to saccharification with two enzyme cocktails prepared from commercial preparations, and evaluation of the best pretreatment and enzyme cocktail was based on the yield of fermentable sugars produced. As AAS provided the best result after preliminary experiments, enhancement of sugar production was attempted by changing the concentrations of ammonium hydroxide, enzymes, and CS. The optimal pretreatment condition was 10 % ammonium hydroxide, 70 °C, 22 h with CS at 5 % solid loading. After saccharification of the pretreated CS for 72 h at 50 °C and pH 5.0 with a cocktail containing cellulase (Accellerase 1500), beta-glucosidase (Accellerase BG), and xylanase (Accellerase XY), glucose and xylose yields were 67.8 and 92.7 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAS:

Aqueous ammonia soaking

CS:

Chestnut shell

References

  1. Sun, Y., & Cheng, J. Y. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  2. Gray, K. A., Zhao, L., & Emptage, M. (2006). Bioethanol. Current Opinion in Chemical Biology, 10, 141–146.

    Article  CAS  Google Scholar 

  3. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  4. Nguyen, Q. A., Tucker, M. P., Keller, F. A., & Eddy, F. P. (2000). Two stage dilute-acid pretreatment of softwoods. Applied Biochemistry and Biotechnology, 84(86), 561–576.

    Article  Google Scholar 

  5. Israilides, C. J., Grant, G. A., & Han, Y. W. (1978). Sugar level, fermentability, and acceptability of straw treated with different acids. Applied and Environmental Microbiology, 36, 43–46. table.

    CAS  Google Scholar 

  6. Goldstein, I. S., & Easter, J. M. (1992). An improved process for converting cellulose to ethanol. TAPPI Journal, 75, 135–140.

    CAS  Google Scholar 

  7. Brink, D. L. (1994). Method of treating biomass material. US Patent, 5, 366–558.

    Google Scholar 

  8. Kim, S., & Holtzapple, M. T. (2005). Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology, 96, 1994–2006.

    Article  CAS  Google Scholar 

  9. Kim, T. K., Taylor, F., & Hicks, K. B. (2008). Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresource Technology, 99, 5694–5702.

    Article  CAS  Google Scholar 

  10. Gaspar, M., Kalman, G., & Reczey, K. (2007). Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochemistry, 42, 1135–1139.

    Article  CAS  Google Scholar 

  11. Varga, E., Reczey, K., & Zacchi, G. (2004). Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology, 113, 509–523.

    Article  Google Scholar 

  12. Anagnostakis, S. (2005). Chestnut in United States for food and for timber. Acta Horticulturae, 693, 41–46.

    Google Scholar 

  13. Vázquez, G., Fontenla, E., Santos, J., Freire, M. S., Gonzàlez-Alvarez, J., & Antorrena, G. (2008). Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 28, 279–285.

    Article  Google Scholar 

  14. Vázquez, G., González-Alvarez, J., Santos, J., Freire, M. S., & Antorrena, G. (2009). Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 29, 364–370.

    Article  Google Scholar 

  15. Vazquez, G., Calvo, M., Freire, M. S., Gonzalez-Alvarez, J., & Antorrena, G. (2009). Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal. Journal of Hazardous Materials, 172, 1402–1414.

    Article  CAS  Google Scholar 

  16. Vazquez G., Mosquera, O., Freire, M.S., Antorrena, G., & Gonzalez-Alvarez, J. (2010). Influence of pre-treatment methods on the adsorption of cadmium ions by chestnut shell, in Waste management and the environment V, transaction: ecology and the environment, vol. 140: (Popov, V., Itoh, H., Mander, U., Brebbia, C.A. eds.), WIT, pp. 179–189.

  17. Vázquez, G., Mosquera, O., Freire, M. S., Antorrena, G., & González-Álvarez, J. (2012). Alkaline pre-treatment of waste chestnut shell from a food industry to enhance cadmium, copper, lead and zinc ions removal. Chemical Engineering Journal, 184, 147–155.

    Article  Google Scholar 

  18. White, J. S., Yohannan, B. K., & Walker, G. M. (2008). Bioconversion of brewer’s spent grains to bioethanol. FEMS Yeast Research, 8, 1175–1184.

    Article  CAS  Google Scholar 

  19. Zhu, Y., Kim, T. H., Lee, Y. Y., Chen, R., & Elander, R. T. (2006). Enzymatic production of xylo-oligosaccharides from corn stover and corn cobs treated with aqueous ammonia. Applied Biochemistry and Biotechnology, 129(132), 586–598.

    Article  Google Scholar 

  20. Biely, P., Mislovicova, D., & Toman, R. (1985). Soluble chromogenic substrates for the assay of endo-1,4-beta-xylanases and endo-1,4-beta-glucanases. Analytical Biochemistry, 144, 142–146.

    Article  CAS  Google Scholar 

  21. Morana, A., Maurelli, L., La Cara, F., & Rossi, M. (2009). Extremely thermophilic enzymes: their utilization in agricultural waste conversion for bioethanol production. In J. B. Erbaum (Ed.), Bioethanol: production, benefits and economics (pp. 93–106). New York: Nova.

    Google Scholar 

  22. Silverstein, R. A., Ratna, Y. C., Sharma-Shivappa, R., Boyette, M. D., & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98, 3000–3011.

    Article  CAS  Google Scholar 

  23. Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspect of xylanases. FEMS Microbiology Reviews, 23, 411–456.

    Article  CAS  Google Scholar 

  24. Boraston, A. B., Bolam, D. N., Gilbert, H. J., & Davies, G. J. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochemical Journal, 382, 769–781.

    Article  CAS  Google Scholar 

  25. Guillén, D., Sánchez, S., & Rodríguez-Sanoja, R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Applied Microbiology and Biotechnology, 85, 1241–1249.

    Article  Google Scholar 

  26. Rosgaard, L., Pedersen, S., & Meyer, A. S. (2007). Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw. Applied Biochemistry and Biotechnology, 143, 284–296.

    Article  CAS  Google Scholar 

  27. Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physico-chemical pretreatment of lignocellulosic biomass: a review. Enzyme Research. doi:10.4061/2011/787532.

    Google Scholar 

  28. Saratale, G. D., & Oh, S. E. (2012). Lignocellulosics to ethanol: the future of the chemical and energy industry. African Journal of Biotechnology, 11, 1002–1013.

    CAS  Google Scholar 

  29. Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pre-treatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2, 51–68.

    CAS  Google Scholar 

  30. Mohsenzadehm, A., Jeihanipour, A., Karimi, K., & Taherzadeh, M. J. (2012). Alkali pretreatment of softwood spruce and hardwood birch by NaOH/thiourea, NaOH/urea, NaOH/urea/thiourea, and NaOH/PEG to improve ethanol and biogas production. Journal of Chemical Technology and Biotechnology. doi:10.1002/jctb.3695.

    Google Scholar 

  31. Kim, T. H., & Lee, X. Y. (2005). Pretreatment of corn stover by soaking in aqueous ammonia. Applied Biochemistry and Biotechnology, 124, 1119–1131.

    Article  Google Scholar 

  32. Kim, T. H., & Lee, X. Y. (2007). Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Applied Biochemistry and Biotechnology, 137(140), 81–92.

    Article  Google Scholar 

  33. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  34. Zhu, S., Wu, Y., Yu, Z., Liao, J., & Zhang, Y. (2005). Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 40, 3082–3086.

    Article  CAS  Google Scholar 

  35. Keshwani, D. R., & Cheng, J. J. (2010). Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnology Progress, 26, 644–652.

    Article  CAS  Google Scholar 

  36. Hu, Z., & Wen, Z. (2008). Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 38, 369–378.

    Article  CAS  Google Scholar 

  37. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., & Saddler, J. (2006). Inhibition of cellulase, xylanase and beta–glucosidase activities by softwood lignin preparations. Journal of Biotechnology, 125, 198–209.

    Article  CAS  Google Scholar 

  38. Várnai, A., Siika-ahob, M., & Viikari, L. (2010). Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme and Microbial Technology, 46, 185–193.

    Article  Google Scholar 

  39. Rahikainen, J., Mikander, S., Marjamaa, K., Tamminen, T., Lappas, A., Viikari, L., & Kruus, K. (2011). Inhibition of enzymatic hydrolysis by residual lignins from softwood. Study of enzyme binding and inactivation on lignin-rich surface. Biotechnology and Bioengineering, 108, 2823–2834.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Isabella De Bari, Dr. Francesco Zimbardi and Dr. Egidio Viola, from the Laboratory of Technology and Equipment for Biomass and Solar Thermal Energy, Italian National Agency for New Technologies, Energy and Sustainable Economic Development—ENEA, Rotondella, Italy, for determination of chemical composition of untreated CS and for steam explosion pretreatments. The authors also thank Mrs. Cristina Del Barone from the Institute of Polymer Chemistry and Technology—National Research Council of Italy, Pozzuoli, Naples for SEM microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Morana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurelli, L., Ionata, E., La Cara, F. et al. Chestnut Shell as Unexploited Source of Fermentable Sugars: Effect of Different Pretreatment Methods on Enzymatic Saccharification. Appl Biochem Biotechnol 170, 1104–1118 (2013). https://doi.org/10.1007/s12010-013-0264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0264-5

Keywords

Navigation