Applied Biochemistry and Biotechnology

, Volume 170, Issue 4, pp 774–786 | Cite as

Serum Proteomics in Biomedical Research: A Systematic Review

  • Ai-hua Zhang
  • Hui SunEmail author
  • Guang-li Yan
  • Ying Han
  • Xi-jun Wang


Proteins that are important indicators of physiological or pathological states may contribute to the early diagnosis of disease, which may provide a basis for identifying the underlying mechanism of disease development. Serum, contains an abundance of proteins, offers an easy and inexpensive approach for disease detection and possesses a high potential to revolutionize the diagnostics. These differentially expressed proteins in serum have become an important role to monitoring the state for disease. Availability of emerging proteomic techniques gives optimism that serum can eventually be placed as a biomedium for clinical diagnostics. Advancements have benefited biomarker research to the point where serum is now recognized as an excellent diagnostic medium for the detection of disease. Comprehensive proteome of human serum fluid with high accuracy and availability has the potential to open new doors for disease biomarker discovery and for disease diagnostics, providing insights useful for future study. Thus, this review presents an overview of the value of serum as a credible diagnostic tool, and we aim to summarize the proteomic technologies currently used for global analysis of serum proteins and to elaborate on the application of serum proteomics to the discovery of disease biomarkers, and discuss some of the critical challenges and perspectives for this emerging field.


Proteomics Serum Proteins Biomarkers Disease diagnosis System biology 



Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry


CXC chemokine ligand 7


Surface enhanced laser desorption/ionization time-of-flight mass spectrometry




Prostate specific antigen


Parkinson’s disease


Hepatocellular carcinoma


Colorectal cancer


Laryngeal carcinoma



This work was supported by grants from the Key Program of the Natural Science Foundation of the State (Grant no. 90709019), the National Key Program on the Subject of Drug Innovation (Grant no. 2009ZX09502-005), the National Specific Program on the Subject of Public Welfare (Grant no. 200807014), the National Program for Key Basic Research Projects in China (Grant no. 2005CB523406), and the Foundation of Heilongjiang University of Chinese Medicine (Grant no. 201209).

Competing Financial Interests

The authors declare no competing financial interests.


  1. 1.
    Schwenk, J., Harmel, N., Zolles, G., Bildl, W., Kulik, A., Heimrich, B., Chisaka, O., Jonas, P., Schulte, U., Fakler, B., & Klöcker, N. (2009). Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science, 323(5919), 1313–9.CrossRefGoogle Scholar
  2. 2.
    Wang, X., Zhang, A., Han, Y., Wang, P., Sun, H., Song, G., Dong, T., Yuan, Y., Yuan, X., Zhang, M., Xie, N., Zhang, H., Dong, H., & Dong, W. (2012). Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease. Molecular & Cellular Proteomics, 11(8), 370–80.CrossRefGoogle Scholar
  3. 3.
    Gutiérrez-Sánchez, G., Atwood, J., Kolli, V. S., Roussos, S., & Augur, C. (2012). Initial proteome analysis of caffeine-induced proteins in Aspergillus tamarii using two-dimensional fluorescence difference gel electrophoresis. Applied Biochemistry and Biotechnology, 166(8), 2064–77.CrossRefGoogle Scholar
  4. 4.
    Wildes, D., & Wells, J. A. (2010). Sampling the N-terminal proteome of human blood. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4561–6.CrossRefGoogle Scholar
  5. 5.
    Zhang, Y., Guo, B., & Bi, R. (2012). Ovarian cancer: biomarker proteomic diagnosis in progress. Applied Biochemistry and Biotechnology, 168(4), 910–6.CrossRefGoogle Scholar
  6. 6.
    Zhang, A., Sun, H., Sun, W., Ye, Y., & Wang, X. (2013). Proteomic identification network analysis of haptoglobin as a key regulator associated with liver fibrosis. Applied Biochemistry and Biotechnology, 169(3), 832–46.CrossRefGoogle Scholar
  7. 7.
    Marondedze, C., & Thomas, L. A. (2012). Apple hypanthium firmness: new insights from comparative proteomics. Applied Biochemistry and Biotechnology, 168(2), 306–26.CrossRefGoogle Scholar
  8. 8.
    Aivado, M., Spentzos, D., Germing, U., Alterovitz, G., Meng, X. Y., Grall, F., Giagounidis, A. A., Klement, G., Steidl, U., Otu, H. H., Czibere, A., Prall, W. C., Iking-Konert, C., Shayne, M., Ramoni, M. F., Gattermann, N., Haas, R., Mitsiades, C. S., Fung, E. T., & Libermann, T. A. (2007). Serum proteome profiling detects myelodysplastic syndromes and identifies CXC chemokine ligands 4 and 7 as markers for advanced disease. Proceedings of the National Academy of Sciences of the United States of America, 104(4), 1307–12.CrossRefGoogle Scholar
  9. 9.
    Yu, C., Xu, C., Xu, L., Yu, J., Miao, M., & Li, Y. (2012). Serum proteomic analysis revealed diagnostic value of hemoglobin for nonalcoholic fatty liver disease. Journal of Hepatology, 56(1), 241–7.CrossRefGoogle Scholar
  10. 10.
    Liu, W., Liu, B., Cai, Q., Li, J., Chen, X., & Zhu, Z. (2012). Proteomic identification of serum biomarkers for gastric cancer using multidimensional liquid chromatography and 2D differential gel electrophoresis. Clinical Chemical Acta, 413(13–14), 1098–106.CrossRefGoogle Scholar
  11. 11.
    Wang, X., Zhang, A., & Sun, H. (2012). Future perspectives of Chinese medical formulae: chinmedomics as an effector. OMICS, 16(7–8), 414–21.CrossRefGoogle Scholar
  12. 12.
    Chakraborty, C., Pal, S., Doss, C. G., Wen, Z. H., & Lin, C. S. (2012). In silico analysis of COMT, an important signaling cascade of dopaminergic neurotransmission pathway, for drug development of Parkinson’s disease. Applied Biochemistry and Biotechnology, 167(4), 845–60.CrossRefGoogle Scholar
  13. 13.
    Zhang, A., Sun, H., Wang, P., & Wang, X. (2013). Salivary proteomics in biomedical research. Clinica Chimica Acta, 415, 261–5.CrossRefGoogle Scholar
  14. 14.
    Besson, D., Pavageau, A. H., Valo, I., Bourreau, A., Bélanger, A., Eymerit-Morin, C., Moulière, A., Chassevent, A., Boisdron-Celle, M., Morel, A., Solassol, J., Campone, M., Gamelin, E., Barré, B., Coqueret, O., & Guette, C. (2011). A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. Molecular & Cellular Proteomics, 10(12), M111.009712.CrossRefGoogle Scholar
  15. 15.
    Karthik, D., Ilavenil, S., Kaleeswaran, B., Sunil, S., & Ravikumar, S. (2012). Proteomic analysis of plasma proteins in diabetic rats by 2D electrophoresis and MALDI-TOF-MS. Applied Biochemistry and Biotechnology, 166(6), 1507–19.CrossRefGoogle Scholar
  16. 16.
    Carlsson, A., Wuttge, D. M., Ingvarsson, J., Bengtsson, A. A., Sturfelt, G., Borrebaeck, C. A., & Wingren, C. (2011). Serum protein profiling of systemic lupus erythematosus and systemic sclerosis using recombinant antibody microarrays. Molecular & Cellular Proteomics, 10(5), M110.005033.CrossRefGoogle Scholar
  17. 17.
    Wang, X., Zhang, A., Wang, P., Sun, H., Wu, G., Sun, W., Lv, H., Jiao, G., Xu, H., Yuan, Y., Liu, L., Zou, D., Wu, Z., Han, Y., Yan, G., Dong, W., Wu, F., Dong, T., Yu, Y., Zhang, S., Wu, X., Tong, X., & Meng, X. (2013). Metabolomics coupled with proteomics advancing drug discovery towards more agile development of targeted combination therapies. Molecular & Cellular Proteomics. doi: 10.1074/mcp.M112.021683.Google Scholar
  18. 18.
    Sun, H., Zhang, A., Yan, G., Han, Y., Sun, W., Ye, Y., & Wang, X. (2013). Proteomics study on the hepatoprotective effects of traditional Chinese medicine formulae Yin-Chen-Hao-Tang by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 75, 173–9.CrossRefGoogle Scholar
  19. 19.
    Wang, X., Zhang, A., Sun, H., Wu, G., Sun, W., & Yan, G. (2012). Network generation enhances interpretation of proteomics data sets by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Analyst, 137(20), 4703–11.CrossRefGoogle Scholar
  20. 20.
    Zhang, K., Yuan, K., Wu, H., Li, Q., Wang, Y., Chen, S., Zhang, L., Gu, H., & Fu, R. (2012). Identification of potential markers related to neoadjuvant chemotherapy sensitivity of breast cancer by SELDI-TOF MS. Applied Biochemistry and Biotechnology, 166(3), 753–63.CrossRefGoogle Scholar
  21. 21.
    Arbing, M. A., Kaufmann, M., Phan, T., Chan, S., Cascio, D., & Eisenberg, D. (2010). The crystal structure of the Mycobacterium tuberculosis Rv3019c-Rv3020c ESX complex reveals a domain-swapped heterotetramer. Protein Science, 19(9), 1692–703.CrossRefGoogle Scholar
  22. 22.
    Mobley, J. A., & Poliakov, A. (2009). Detection of early unfolding events in a dimeric protein by amide proton exchange and native electrospray mass spectrometry. Protein Science, 18(8), 1620–7.CrossRefGoogle Scholar
  23. 23.
    Wu, Z., Doondeea, J. B., Gholami, A. M., Janning, M. C., Lemeer, S., Kramer, K., Eccles, S. A., Gollin, S. M., Grenman, R., Walch, A., Feller, S. M., & Kuster, B. (2011). Quantitative chemical proteomics reveals new potential drug targets in head and neck cancer. Molecular & Cellular Proteomics, 10(12), M111.011635.CrossRefGoogle Scholar
  24. 24.
    Wiltzius, J. J., Sievers, S. A., Sawaya, M. R., & Eisenberg, D. (2009). Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Science, 18(7), 1521–30.CrossRefGoogle Scholar
  25. 25.
    Sugiki, T., Yoshiura, C., Kofuku, Y., Ueda, T., Shimada, I., & Takahashi, H. (2009). High-throughput screening of optimal solution conditions for structural biological studies by fluorescence correlation spectroscopy. Protein Science, 18(5), 1115–20.CrossRefGoogle Scholar
  26. 26.
    Edrei, Y., Gross, E., Corchia, N., & Abramovitch, R. (2012). Improved efficacy of a novel anti-angiogenic drug combination (TL-118) against colorectal-cancer liver metastases; MRI monitoring in mice. British Journal of Cancer, 107(4), 658–66.CrossRefGoogle Scholar
  27. 27.
    Vafadar-Isfahani, B., Ball, G., Coveney, C., Lemetre, C., Boocock, D., Minthon, L., Hansson, O., Miles, A. K., Janciauskiene, S. M., Warden, D., Smith, A. D., Wilcock, G., Kalsheker, N., Rees, R., Matharoo-Ball, B., & Morgan, K. (2012). Identification of SPARC-like 1 protein as part of a biomarker panel for Alzheimer’s disease in cerebrospinal fluid. Journal of Alzheimer’s Disease, 28(3), 625–36.Google Scholar
  28. 28.
    Afshar, S., Sawaya, M. R., & Morrison, S. L. (2009). Structure of a mutant human purine nucleoside phosphorylase with the prodrug, 2-fluoro-2′-deoxyadenosine and the cytotoxic drug, 2-fluoroadenine. Protein Science, 18(5), 1107–14.CrossRefGoogle Scholar
  29. 29.
    Hew, C. S., & Gam, L. H. (2011). Proteome analysis of abundant proteins extracted from the leaf of Gynura procumbens (Lour.) Merr. Applied Biochemistry and Biotechnology, 165(7–8), 1577–86.CrossRefGoogle Scholar
  30. 30.
    Cubedo, J., Padró, T., García-Moll, X., Pintó, X., Cinca, J., & Badimon, L. (2011). Proteomic signature of Apolipoprotein J in the early phase of new-onset myocardial infarction. Journal of Proteome Research, 10(1), 211–20.CrossRefGoogle Scholar
  31. 31.
    Hu, S., Loo, J. A., & Wong, D. T. (2006). Human body fluid proteome analysis. Proteomics, 6(23), 6326–53.CrossRefGoogle Scholar
  32. 32.
    Navaglia, F., Fogar, P., Basso, D., Greco, E., Padoan, A., Tonidandel, L., Fadi, E., Zambon, C. F., Bozzato, D., Moz, S., Seraglia, R., Pedrazzoli, S., & Plebani, M. (2009). Pancreatic cancer biomarkers discovery by surface-enhanced laser desorption and ionization time-of-flight mass spectrometry. Clinical Chemistry and Laboratory Medicine, 47(6), 713–23.CrossRefGoogle Scholar
  33. 33.
    Lim, S. R., Gooi, B. H., Singh, M., & Gam, L. H. (2011). Analysis of differentially expressed proteins in colorectal cancer using hydroxyapatite column and SDS-PAGE. Applied Biochemistry and Biotechnology, 165(5–6), 1211–24.CrossRefGoogle Scholar
  34. 34.
    Wang, X., Yang, B., Zhang, A., Sun, H., & Yan, G. (2012). Potential drug targets on insomnia and intervention effects of Jujuboside. A through metabolic pathway analysis as revealed by UPLC/ESI-SYNAPT-HDMS coupled with pattern recognition approach. Journal of Proteomics, 75(4), 1411–27.CrossRefGoogle Scholar
  35. 35.
    Zhang, A., Sun, H., Wu, G., Sun, W., Ye, Y., & Wang, X. (2013). Proteomics analysis of hepatoprotective effects for scoparone using MALDI-TOF/TOF mass spectrometry with bioinformatics. OMICS. doi: 10.1089/omi.2012.0064.Google Scholar
  36. 36.
    Lopez, M. F., Mikulskis, A., Kuzdzal, S., Golenko, E., Petricoin, E. F., 3rd, Liotta, L. A., Patton, W. F., Whiteley, G. R., Rosenblatt, K., Gurnani, P., Nandi, A., Neill, S., Cullen, S., O’Gorman, M., Sarracino, D., Lynch, C., Johnson, A., Mckenzie, W., & Fishman, D. (2007). A novel, high-throughput workflow for discovery, and identification of serum carrier protein-bound peptide biomarker candidates in ovarian cancer samples. Clinical Chemistry, 53(6), 1067–74.CrossRefGoogle Scholar
  37. 37.
    Longo, C., Patanarut, A., George, T., Bishop, B., Zhou, W., Fredolini, C., Ross, M. M., Espina, V., Pellacani, G., Petricoin, E. F., 3rd, Liotta, L. A., & Luchini, A. (2009). Core-shell hydrogel particles harvest, concentrate and preserve labile low abundance biomarkers. PLoS One, 4(3), e4763.CrossRefGoogle Scholar
  38. 38.
    Bijian, K., Mlynarek, A. M., Balys, R. L., Jie, S., Xu, Y., Hier, M. P., Black, M. J., Di Falco, M. R., LaBoissiere, S., & Alaoui-Jamali, M. A. (2009). Serum proteomic approach for the identification of serum biomarkers contributed by oral squamous cell carcinoma and host tissue microenvironment. Journal of Proteome Research, 8(5), 2173–85.CrossRefGoogle Scholar
  39. 39.
    Chen, C. S., Sullivan, S., Anderson, T., Tan, A. C., Alex, P. J., Brant, S. R., Cuffari, C., Bayless, T. M., Talor, M. V., Burek, C. L., Wang, H., Li, R., Datta, L. W., Wu, Y., Winslow, R. L., Zhu, H., & Li, X. (2009). Identification of novel serological biomarkers for inflammatory bowel disease using Escherichia coli proteome chip. Molecular & Cellular Proteomics, 8(8), 1765–76.CrossRefGoogle Scholar
  40. 40.
    Alterman, M. A., Gogichayeva, N. V., & Kornilayev, B. A. (2004). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based amino acid analysis. Analytical Biochemistry, 335(2), 184–91.CrossRefGoogle Scholar
  41. 41.
    Mehan, M. R., Ayers, D., Thirstrup, D., Xiong, W., Ostroff, R. M., Brody, E. N., Walker, J. J., Gold, L., Jarvis, T. C., Janjic, N., Baird, G. S., & Wilcox, S. K. (2012). Protein signature of lung cancer tissues. PLoS One, 7(4), e35157.CrossRefGoogle Scholar
  42. 42.
    Brown, D. L., Andreotti, R. F., Lee, S. I., Dejesus Allison, S. O., Bennett, G. L., Dubinsky, T., Glanc, P., Horrow, M. M., Lev-Toaff, A. S., Horowitz, N. S., Podrasky, A. E., Scoutt, L. M., & Zelop, C. M. (2010). ACR appropriateness criteria© ovarian cancer screening. Ultrasound Quarterly, 26(4), 219–23.CrossRefGoogle Scholar
  43. 43.
    Boyce, E. A., & Kohn, E. C. (2005). Ovarian cancer in the proteomics era: diagnosis, prognosis, and therapeutic targets. International Journal of Gynecological Cancer, 15(Suppl 3), 266–73.CrossRefGoogle Scholar
  44. 44.
    Lorkova, L., Pospisilova, J., Lacheta, J., Leahomschi, S., Zivny, J., Cibula, D., Zivny, J., & Petrak, J. (2012). Decreased concentrations of retinol-binding protein 4 in sera of epithelial ovarian cancer patients: a potential biomarker identified by proteomics. Oncology Reports, 27(2), 318–24.Google Scholar
  45. 45.
    Clarke, C. H., Yip, C., Badgwell, D., Fung, E. T., Coombes, K. R., Zhang, Z., Lu, K. H., & Bast, R. C., Jr. (2011). Proteomic biomarkers apolipoprotein A1, truncated transthyretin, and connective tissue activating protein III enhance the sensitivity of CA125 for detecting early stage epithelial ovarian cancer. Gynecologic Oncology, 122(3), 548–53.CrossRefGoogle Scholar
  46. 46.
    Sun, C., Rosendahl, A. H., Ansari, D., & Andersson, R. (2011). Proteome-based biomarkers in pancreatic cancer. World Journal of Gastroenterology, 17(44), 4845–52.CrossRefGoogle Scholar
  47. 47.
    Matsubara, J., Honda, K., Ono, M., Tanaka, Y., Kobayashi, M., Jung, G., Yanagisawa, K., Sakuma, T., Nakamori, S., Sata, N., Nagai, H., Ioka, T., Okusaka, T., Kosuge, T., Tsuchida, A., Shimahara, M., Yasunami, Y., Chiba, T., Hirohashi, S., & Yamada, T. (2011). Reduced plasma level of CXC chemokine ligand 7 in patients with pancreatic cancer. Cancer Epidemiology, Biomarkers & Prevention, 20(1), 160–71.CrossRefGoogle Scholar
  48. 48.
    Guo, J., Wang, W., Liao, P., Lou, W., Ji, Y., Zhang, C., Wu, J., & Zhang, S. (2009). Identification of serum biomarkers for pancreatic adenocarcinoma by proteomic analysis. Cancer Science, 100(12), 2292–301.CrossRefGoogle Scholar
  49. 49.
    Böhm, D., Keller, K., Wehrwein, N., Lebrecht, A., Schmidt, M., Kölbl, H., & Grus, F. H. (2011). Serum proteome profiling of primary breast cancer indicates a specific biomarker profile. Oncology Reports, 26(5), 1051–6.Google Scholar
  50. 50.
    Zeng, Z., Hincapie, M., Pitteri, S. J., Hanash, S., Schalkwijk, J., Hogan, J. M., Wang, H., & Hancock, W. S. (2011). A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome. Analytical Chemistry, 83(12), 4845–54.CrossRefGoogle Scholar
  51. 51.
    Pietrowska, M., Polanska, J., Marczak, L., Behrendt, K., Nowicka, E., Stobiecki, M., Polanski, A., Tarnawski, R., & Widlak, P. (2010). Mass spectrometry-based analysis of therapy-related changes in serum proteome patterns of patients with early-stage breast cancer. Journal of Translational Medicine, 8, 66.CrossRefGoogle Scholar
  52. 52.
    Pietrowska, M., Marczak, L., Polanska, J., Behrendt, K., Nowicka, E., Walaszczyk, A., Chmura, A., Deja, R., Stobiecki, M., Polanski, A., Tarnawski, R., & Widlak, P. (2009). Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer. Journal of Translational Medicine, 7, 60.CrossRefGoogle Scholar
  53. 53.
    Li, Y., Zeng, J., Shi, J., Wang, M., Rao, M., Xue, C., Du, Y., & He, Z. G. (2010). A proteome-scale identification of novel antigenic proteins in Mycobacterium tuberculosis toward diagnostic and vaccine development. Journal of Proteome Research, 9(9), 4812–22.CrossRefGoogle Scholar
  54. 54.
    Brust, B., Lecoufle, M., Tuaillon, E., Dedieu, L., Canaan, S., Valverde, V., & Kremer, L. (2011). Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis. PLoS One, 6(9), e25078.CrossRefGoogle Scholar
  55. 55.
    Liu, J. Y., Jin, L., Zhao, M. Y., Zhang, X., Liu, C. B., Zhang, Y. X., Li, F. J., Zhou, J. M., Wang, H. J., & Li, J. C. (2011). New serum biomarkers for detection of tuberculosis using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Clinical Chemistry and Laboratory Medicine, 49(10), 1727–33.CrossRefGoogle Scholar
  56. 56.
    Yang, S. Y., Adelstein, J., & Kassis, A. I. (2010). Putative molecular signatures for the imaging of prostate cancer. Expert Review of Molecular Diagnostics, 10(1), 65–74.CrossRefGoogle Scholar
  57. 57.
    Yocum, A. K., Khan, A. P., Zhao, R., & Chinnaiyan, A. M. (2010). Development of selected reaction monitoring-MS methodology to measure peptide biomarkers in prostate cancer. Proteomics, 10(19), 3506–14.CrossRefGoogle Scholar
  58. 58.
    Larkin, S. E., Zeidan, B., Taylor, M. G., Bickers, B., Al-Ruwaili, J., Aukim-Hastie, C., & Townsend, P. A. (2010). Proteomics in prostate cancer biomarker discovery. Expert Review of Proteomics, 7(1), 93–102.CrossRefGoogle Scholar
  59. 59.
    Steuber, T., O’Brien, M. F., & Lilja, H. (2008). Serum markers for prostate cancer: a rational approach to the literature. European Urology, 54(1), 31–40.CrossRefGoogle Scholar
  60. 60.
    Byrne, J. C., Downes, M. R., O’Donoghue, N., O’Keane, C., O’Neill, A., Fan, Y., Fitzpatrick, J. M., Dunn, M., & Watson, R. W. (2009). 2D-DIGE as a strategy to identify serum markers for the progression of prostate cancer. Journal of Proteome Research, 8(2), 942–57.CrossRefGoogle Scholar
  61. 61.
    Sardana, G., Jung, K., Stephan, C., & Diamandis, E. P. (2008). Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. Journal of Proteome Research, 7(8), 3329–38.CrossRefGoogle Scholar
  62. 62.
    Zhang, X., Yin, X., Yu, H., Liu, X., Yang, F., Yao, J., Jin, H., & Yang, P. (2012). Quantitative proteomic analysis of serum proteins in patients with Parkinson’s disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. Analyst, 137(2), 490–5.CrossRefGoogle Scholar
  63. 63.
    Li, Y. H., Wang, J., Zheng, X. L., Zhang, Y. L., Li, X., Yu, S., He, X., & Chan, P. (2011). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry combined with magnetic beads for detecting serum protein biomarkers in Parkinson’s disease. European Neurology, 65(2), 105–11.CrossRefGoogle Scholar
  64. 64.
    Gressner, O. A., Weiskirchen, R., & Gressner, A. M. (2007). Biomarkers of liver fibrosis: clinical translation of molecular pathogenesis or based on liver-dependent malfunction tests. Clinica Chimica Acta, 381(2), 107–13.CrossRefGoogle Scholar
  65. 65.
    Mölleken, C., Sitek, B., Henkel, C., Poschmann, G., Sipos, B., Wiese, S., Warscheid, B., Broelsch, C., Reiser, M., Friedman, S. L., Tornøe, I., Schlosser, A., Klöppel, G., Schmiegel, W., Meyer, H. E., Holmskov, U., & Stühler, K. (2009). Detection of novel biomarkers of liver cirrhosis by proteomic analysis. Hepatology, 49(4), 1257–66.CrossRefGoogle Scholar
  66. 66.
    Uto, H., Kanmura, S., Takami, Y., & Tsubouchi, H. (2010). Clinical proteomics for liver disease: a promising approach for discovery of novel biomarkers. Proteome Sci., 8, 70.CrossRefGoogle Scholar
  67. 67.
    Ward, D. G., Suggett, N., Cheng, Y., Wei, W., Johnson, H., Billingham, L. J., Ismail, T., Wakelam, M. J., Johnson, P. J., & Martin, A. (2006). Identification of serum biomarkers for colon cancer by proteomic analysis. British Journal of Cancer, 94(12), 1898–905.CrossRefGoogle Scholar
  68. 68.
    Ma, Y. L., Peng, J. Y., Zhang, P., Huang, L., Liu, W. J., Shen, T. Y., Chen, H. Q., Zhou, Y. K., Zhang, M., Chu, Z. X., & Qin, H. L. (2009). Heterogeneous nuclear ribonucleoprotein A1 is identified as a potential biomarker for colorectal cancer based on differential proteomics technology. Journal of Proteome Research, 8(10), 4525–35.CrossRefGoogle Scholar
  69. 69.
    Kelly, P., Paulin, F., Lamont, D., Baker, L., Clearly, S., Exon, D., & Thompson, A. (2012). Pretreatment plasma proteomic markers associated with survival in esophageal cancer. British Journal of Cancer, 106(5), 955–61.CrossRefGoogle Scholar
  70. 70.
    Liu, C., Pan, C., Wang, H., & Yong, L. (2011). Effect of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry on identifying biomarkers of laryngeal carcinoma. Tumor Biology, 32(6), 1139–45.CrossRefGoogle Scholar
  71. 71.
    Tan, Y., Ma, S. Y., Wang, F. Q., Meng, H. P., Mei, C., Liu, A., & Wu, H. R. (2011). Proteomic-based analysis for identification of potential serum biomarkers in gallbladder cancer. Oncology Reports, 26(4), 853–9.Google Scholar
  72. 72.
    Wang, Y. S., Cao, R., Jin, H., Huang, Y. P., Zhang, X. Y., Cong, Q., He, Y. F., & Xu, C. J. (2011). Altered protein expression in serum from endometrial hyperplasia and carcinoma patients. Journal of Hematology & Oncology, 4, 15.CrossRefGoogle Scholar
  73. 73.
    Ostroff, R. M., Bigbee, W. L., Franklin, W., Gold, L., Mehan, M., Miller, Y. E., Pass, H. I., Rom, W. N., Siegfried, J. M., Stewart, A., Walker, J. J., Weissfeld, J. L., Williams, S., Zichi, D., & Brody, E. N. (2010). Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer. PLoS One, 5(12), e15003.CrossRefGoogle Scholar
  74. 74.
    Han, M. H., Hwang, S. I., Roy, D. B., Lundgren, D. H., Price, J. V., Ousman, S. S., Fernald, G. H., Gerlitz, B., Robinson, W. H., Baranzini, S. E., Grinnell, B. W., Raine, C. S., Sobel, R. A., Han, D. K., & Steinman, L. (2008). Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature, 451(7182), 1076–81.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ai-hua Zhang
    • 1
  • Hui Sun
    • 1
    Email author
  • Guang-li Yan
    • 1
  • Ying Han
    • 1
  • Xi-jun Wang
    • 1
  1. 1.National TCM Key Lab of Serum Pharmacochemistry, Key Lab of Chinmedomics, and Heilongjiang University of Chinese MedicineKey Pharmacometabolomics Platform of Chinese MedicinesHarbinChina

Personalised recommendations