Skip to main content

Advertisement

Log in

Preparation and Characterization of Polyhydroxyalkanoates Macroporous Scaffold Through Enzyme-Mediated Modifications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are hydrophobic biodegradable thermoplastics that have received considerable attention in biomedical applications due to their biocompatibility, mechanical properties, and biodegradability. In this study, the degradation rate was regulated by optimizing the interaction of parameters that influence the enzymatic degradation of P(3HB) film using response surface methodology (RSM). The RSM model was experimentally validated yielding a maximum 21 % weight loss, which represents onefold increment in percentage weight loss in comparison with the conventional method. By using the optimized condition, the enzymatic degradation by an extracellular PHA depolymerase from Acidovorax sp. DP5 was studied at 37 °C and pH 9.0 on different types of PHA films with various monomer compositions. Surface modification of scaffold was employed using enzymatic technique to create highly porous scaffold with a large surface to volume ratio, which makes them attractive as potential tissue scaffold in biomedical field. Scanning electron microscopy revealed that the surface of salt-leached films was more porous compared with the solvent-cast films, and hence, increased the degradation rate of salt-leached films. Apparently, enzymatic degradation behaviors of PHA films were determined by several factors such as monomer composition, crystallinity, molecular weight, porosity, and roughness of the surface. The hydrophilicity and water uptake of degraded salt-leached film of P(3HB-co-70%4HB) were enhanced by incorporating chitosan or alginate. Salt-leached technique followed by partial enzymatic degradation would enhance the cell attachment and suitable for biomedical as a scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Doi, Y. (1990). Microbial polyesters. New York: VCH.

    Google Scholar 

  2. Tran, R., Dey, J., Gyawali, D., Zhang, Y. & Yang, J. (2010). In M. Chiao & J. C. Chiao (Eds), Biomaterials for MEMS (pp. 1–32). Pan Stanford Publishing Book.

  3. Abe, H., Doi, Y., Aoki, H., & Akehata, T. (1998). Macromolecules, 31, 1791–1797.

    Article  CAS  Google Scholar 

  4. Renard, E., Walls, M., Guèrin, P., & Langlois, V. (2004). Polymer Degradation and Stability, 85, 779–787.

    Article  CAS  Google Scholar 

  5. Hiraishi, T., & Taguchi, S. (2009). Organic and Biomoleculer Chemistry, 6, 44–54.

    CAS  Google Scholar 

  6. Chen, G., Ushida, T., & Tateishi, T. (2002). Macromoleculer Bioscience, 2, 67–77.

    Article  CAS  Google Scholar 

  7. Guzmán, D., Kirsebom, H., Solano, C., Quillaguamán, J., & Kaul, R. H. (2011). Journal of Bioactive and Compatible Polymers, 26, 452–463.

    Article  Google Scholar 

  8. Suh, S. W., Shin, J. Y., Kim, J., Baek, C. H., Kim, D. I., Kim, H., et al. (2002). ASAIO Journal, 48, 460–464.

    Article  CAS  Google Scholar 

  9. Feng, L., Wang, Y., Inagawa, Y., Kasuya, K., Saito, T., Doi, Y., et al. (2004). Polymer Degradation and Stability, 84, 95–104.

    Article  CAS  Google Scholar 

  10. Vigneswari, S., Vijaya, S., Majid, M. I. A., Sudesh, K., Sipaut, C. S., Azizan, M. N. M., et al. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 547–556.

    Article  CAS  Google Scholar 

  11. Braunegg, G., Sonnleitner, B., & Lafferty, R. M. (1978). European Journal of Applied Microbiology, 6, 29–37.

    Article  CAS  Google Scholar 

  12. Ramachandran, H., Nurhezreen, M. I., Sipaut, C. S., & Amirul, A. A. (2011). Applied Biochemistry and Biotechnology, 10, 9180–9188.

    Google Scholar 

  13. Tang, C. Y., Chen, D. Z., Yue, T. M., Chan, K. C., Tsui, C. P., & Yu, P. H. F. (2008). Composites Science and Technology, 68, 1927–1934.

    Article  CAS  Google Scholar 

  14. Timmins, M. R., Lenzt, R. W., & Fuller, R. C. (1997). Polymer, 38, 551–562.

    Article  CAS  Google Scholar 

  15. Doi, Y., Mukai, K., Kasuya, K., & Yamada, K. (1994). Biodegradation of biosynthetic and chemosynthetic polyhydroxyalkanoates. In Y. Doi & K. Fukuda (Eds), Biodegradable plastics and polymers. (pp. 39–51). Amsterdam: Elsevier Science B. V.

  16. Kasuya, K., Inoue, Y., Yamada, K., & Doi, Y. (1995). Polymer Degradation and Stability, 48, 167–174.

    Article  CAS  Google Scholar 

  17. Sudesh, K., Abe, H., & Doi, Y. (2000). Progress in Polymer Science, 25, 1503–1555.

    Article  CAS  Google Scholar 

  18. Ci, S. Q., Chen, S., Liu, D. B., & Xia, H. M. (2006). World Journal of Microbiology and Biotechnology, 22, 729–735.

    Article  CAS  Google Scholar 

  19. Liu, H., Zhang, H., Chen, S., Liu, D., & Xia, H. (2006). Journal of Polymers and the Environment, 14, 419–426.

    Article  CAS  Google Scholar 

  20. Vijayalakshmi, K., & Suseela, R. (2010). African Journal of Microbiology Research, 4, 2388–2396.

    CAS  Google Scholar 

  21. Sadocco, P., Nocerino, S., Paglia, E. D., Seves, A., & Elegir, G. (1997). Journal of Environmental Polymer Degradation, 5, 57–65.

    CAS  Google Scholar 

  22. Iwata, T., Doi, Y., Nakayama, S. I., Sasatsuki, H., & Teramachi, S. (1999). International Journal of Biological Macromolecules, 25, 169–176.

    Article  CAS  Google Scholar 

  23. Abe, H., & Doi, Y. (1999). International Journal of Biological Macromolecules, 25, 185–192.

    Article  CAS  Google Scholar 

  24. Jeya, M., Nguyen, N., Moon, H., Kim, S., & Lee, J. (2010). Bioresouce Technology, 101, 8742–8749.

    Article  CAS  Google Scholar 

  25. Numata, K., Abe, H., & Iwata, T. (2009). Journal of Materials Science, 2, 1104–1126.

    Article  CAS  Google Scholar 

  26. Wang, Y. W., Mo, W., Yao, H., Wu, Q., Chen, J., & Chen, G. Q. (2004). Polymer Degradation and Stability, 85, 815–821.

    Article  CAS  Google Scholar 

  27. Philip, S., Keshavarz, T., & Roy, I. (2007). Journal of Chemical Technology and Biotechnology, 82, 233–247.

    Article  CAS  Google Scholar 

  28. Saito, Y., Nakamura, S., Hiramitsu, M., & Doi, Y. (1996). Polymer International, 39, 169–174.

    Article  CAS  Google Scholar 

  29. Tokiwa, Y., & Calabia, B. P. (2004). Biotechnology Letters, 26, 1181–1189.

    Article  CAS  Google Scholar 

  30. Li, Z., Lin, H., Ishii, N., Chen, G. Q., & Inoue, Y. (2007). Polymer Degradation and Stability, 92, 1708–1714.

    Article  CAS  Google Scholar 

  31. Bayarı, S., & Severcan, F. (2005). Journal of Molecular Structure, 744–747, 529–534.

    Article  Google Scholar 

  32. Xu, J., Guo, B., Yang, R., Wu, Q., Chen, G., & Zhang, Z. (2002). Polymer, 43, 6893–6899.

    Article  CAS  Google Scholar 

  33. Rodríguez-Contreras, A., Calafell-Monfort, M., & Marqués-Calvo, M. S. (2012). Polymer Degradation and Stability, 975, 597–604.

    Article  Google Scholar 

  34. Sabir, M. I., Xu, X., & Li, L. (2009). Journal of Materials Science, 44, 5713–5724.

    Article  CAS  Google Scholar 

  35. Sultana, N., & Wang, M. (2011). International Conference on Biomedical Engineering and Technology IPCBEE (Vol. 11). Singapore: IACSIT Press.

    Google Scholar 

  36. Yu, L., Dean, K., & Li, L. (2006). Progress in Polymer Science, 31, 576–602.

    Article  CAS  Google Scholar 

  37. Freiera, T., Kunzea, C., Nischana, C., Kramera, S., Sternberga, K., Saβ, M., et al. (2002). Biomaterials, 23, 2649–2657.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the USM Fellowship awarded to A. Nor Faezah that has resulted in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Amirul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, N.F., Amirul, A.A. Preparation and Characterization of Polyhydroxyalkanoates Macroporous Scaffold Through Enzyme-Mediated Modifications. Appl Biochem Biotechnol 170, 690–709 (2013). https://doi.org/10.1007/s12010-013-0216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0216-0

Keywords