Skip to main content
Log in

Role of Tryptophan in the Active Site of Plant Esterase: Chemical Modification and Fluorometric Studies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plant esterase extracted from wheat flour play key roles in the spectrophotometric detection of organophosphorus compounds (OPs) for food safety and human health. The purpose of the present study was to investigate the role of tryptophan residues in the activity and structure of plant esterase by chemical modification and fluorometric studies. Active site characterization of purified plant esterase showed the involvement of tryptophan in the catalytic activity. Only one was essential for the enzyme activity by the Tsou’s analysis. Substrate protection experiments further confirmed that the tryptophan residue was located at the substrate-binding site. Fluorescence quenching studies elucidated that the tryptophan residues were largely exposed to the solvent, and a smaller fraction of the surface tryptophan residues had electropositively charged amino acids around them. Experimental results obtained here are expected to promote the applications of plant esterase in OPs detection. Further confirmation of the existence of other critical residues and detailed explanation of their functions were also required for the elucidation of the mechanism involved in the detection of OPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhao, W. J., Sun, X. K., Deng, X. N., Huang, L., Yang, M. M., & Zhou, Z. M. (2011). Food Chemistry, 127, 683–688.

    Article  CAS  Google Scholar 

  2. Zhou, T., Xiao, X. H., & Li, G. K. (2012). Analytical Chemistry, 84, 5816–5822.

    Article  CAS  Google Scholar 

  3. Du, D., Wang, M. H., Cai, J., & Zhang, A. D. (2010). Sensors and Actuators B, 146, 337–341.

    Article  CAS  Google Scholar 

  4. Flampouri, K., Mavrikou, S., Kintzios, S., Miliadis, G., & Aplada-Sarlis, P. (2010). Talanta, 80, 1799–1804.

    Article  CAS  Google Scholar 

  5. Stuhlfelde, C., Mueller, M. J., & Warzecha, H. (2004). European Journal of Biochemistry, 271, 2976–2983.

    Article  Google Scholar 

  6. Dogru, E., Warzecha, H., Seibel, F., Haebel, S., Lottspeich, F., & Stockigt, J. (2000). European Journal of Biochemistry, 267, 1397–1406.

    Article  CAS  Google Scholar 

  7. Wen, Y. X., Li, J. K., Zhang, X. M., & Xu, J. (2006). Food Science, 27, 186–187.

    CAS  Google Scholar 

  8. Huo, D. Q., Yang, L. M., & Hou, C. J. (2009). Sensor Letters, 7, 72–78.

    Article  CAS  Google Scholar 

  9. Yang, L. M., Huo, D. Q., Hou, C. J., Yang, M., Fa, H. B., & Luo, X. G. (2011). Spectrochimica Acta Part A, 78, 1349–1355.

    Article  Google Scholar 

  10. Kazan, D., & Erarslan, A. (2001). Process Biochemistry, 36, 861–867.

    Article  CAS  Google Scholar 

  11. Wen, Y. X., Lan, W. L., & Li, J. K. (2008). Food Science, 29, 292–294.

    CAS  Google Scholar 

  12. Zhou, Y. L., & Li, J. K. (2008). Journal of Chinese Cereals and Oils Association, 23, 72–75.

    Google Scholar 

  13. Zhou, Y. M., Liu, D., Hu, R. E. W., Wang, X., Li, X. N., & Yu, N. (2008). Food Science and Technology, 3, 54–56.

    Google Scholar 

  14. Gote, M. M., Khan, M. I., & Khire, J. M. (2007). Enzyme and Microbial Technology, 40, 1312–1320.

    Article  CAS  Google Scholar 

  15. Yang, L. M., Huo, D. Q., Hou, C. J., He, K., Lv, F. J., & Fa, H. B. (2010). Process Biochemistry, 45, 1664–1671.

    Article  CAS  Google Scholar 

  16. Asperen, K. V. (1962). Journal of Insect Physiology, 8, 401–416.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Funatsu, M., Green, N. M., & Witkop, B. (1964). Journal of the American Chemical Society, 86, 1846.

    Article  CAS  Google Scholar 

  19. Levy, H. M., Leber, P. D., & Ryan, E. M. (1963). Journal of Biological Chemistry, 238, 3654–3659.

    CAS  Google Scholar 

  20. Spande, T. F., & Witkop, B. (1967). Methods in Enzymology, 11, 498–506.

    Article  CAS  Google Scholar 

  21. Tsou, C. L. (1962). Scientia Sinica, 11, 1535–1558.

    CAS  Google Scholar 

  22. Lehrer, S. S. (1971). Biochemistry, 10, 3254–3263.

    Article  CAS  Google Scholar 

  23. Patchornik, A., Lawson, W. B., & Witkop, B. (1958). Journal of the American Chemical Society, 80, 4747–4748.

    Article  CAS  Google Scholar 

  24. Mata, I. D. L., Obregón, V., Ramón, F., Castillón, M. P., & Acebal, C. (2000). Journal of Molecular Catalysis B, 9, 65–73.

    Article  Google Scholar 

  25. Srinivasulu, S., & Rao, A. G. A. (2000). Food Chemistry, 70, 199–204.

    Article  CAS  Google Scholar 

  26. Kumar, A., Gowda, N. M., Gaikwad, S., & Pundle, A. (2009). Journal of Photochemistry and Photobiology. B, 97, 109–116.

    Article  CAS  Google Scholar 

  27. Roig, M. G., & Kennedy, J. F. (1992). Critical Reviews in Biotechnology, 22, 391–412.

    Article  Google Scholar 

  28. Feeney, R. E. (1987). International Journal of Peptide and Protein Research, 29, 145–161.

    Article  CAS  Google Scholar 

  29. Lundblad, R. L. (2005). Chemical reagents for protein modification (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  30. Xie, L. P., Xu, G. R., Cao, W. Z., Zhang, J., & Zhang, R. Q. (2008). Biochemistry (Moscow), 73, 87–91.

    Article  CAS  Google Scholar 

  31. Chen, H. T., Xie, L. P., Yu, Z. Y., Xu, G. R., & Zhang, R. Q. (2005). The International Journal of Biochemistry & Cell Biology, 37, 1446–1457.

    Article  CAS  Google Scholar 

  32. Shashidhara, K. S., & Gaikwad, S. M. (2007). Journal of Fluorescence, 17, 599–605.

    Article  CAS  Google Scholar 

  33. Khan, F., Ahmad, A., & Khan, M. I. (2010). Journal of Fluorescence, 20, 305–313.

    Article  CAS  Google Scholar 

  34. Eftink, M. R., & Ghiron, C. A. (1976). Biochemistry, 15, 672–676.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (no. 31171684, 81102132, and 31101284), Sichuan Key Technologies R&D Program (no. 2010NZ0093), Key Laboratory Program of Sichuan Province, China (no. NJ2011-03), Research Program of General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (no. 2011IK254), and sharing fund of Chongqing University’s large-scale equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Huo, D., He, K. et al. Role of Tryptophan in the Active Site of Plant Esterase: Chemical Modification and Fluorometric Studies. Appl Biochem Biotechnol 170, 909–924 (2013). https://doi.org/10.1007/s12010-013-0203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0203-5

Keywords

Navigation