Skip to main content
Log in

A Natural Isolate Producing Shikimic Acid: Isolation, Identification, and Culture Condition Optimization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 05 May 2013

Abstract

Shikimic acid has wide use in pharmaceuticals due to its application in the synthesis of drug Tamiflu used in the treatment of Swine flu. The high cost and limited availability of shikimic acid isolated from plants has impeded the use of this valuable building block of the drug. In this context, fermentation route to produce shikimic acid from renewable resources has become increasingly attractive. The present study was embarked upon isolation of wild-type microorganisms able to produce shikimic acid. Out of the 42 isolates obtained from the soil, isolate GR-21 was selected as the best with initial production of 0.54 g/L shikimic acid and later identified as Citrobacter sp. The process optimization resulted in 14-fold increase in the shikimic acid production, thereby claiming this process to be a sustainable alternative for the production of this important biomolecule. The process was further scaled up to 14 L bioreactor to validate the production of shikimic acid. Further, the product formed is shikimic acid was confirmed by FTIR analysis. The current studies suggest that the selected isolate could be used as a promising agent to fulfill the worldwide demand of shikimic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elbehri, A. (2005). Biopharming and the food system: Examining the potential benefits and risks, AgBioForum. Available from: www.agbioforum.org.

  2. Roche. (2006). Factsheet TamifluUS. Available from: www.roche.com/med_mbdtamifluo5e.pdf. Accessed 17 November 2006.

  3. Bochkove, D. V., Sysolyatin, S. V., Kalashnikov, A. I., & Surmachena, I. A. (2011). Journal of Chemical Biology, 5, 5–17.

    Article  Google Scholar 

  4. Guglielmini, G. (2011). Shikimic acid: an innovative ingredient for mulitiple cosmetic uses. Available from: www.specchemonline.com/articles/view/an-ingredient-for-multiple-cosmetic-uses. Accessed 21 November 2011.

  5. Koshy, J. P., & Joseph, L. (2009). India steps up search for rare ingredient of swine flu drug India. Available from: www.livemint.com/2009/05/11234512/India-steps-up-search-forrare.html. Accessed 11 May 2009.

  6. Novikova, A. E., Yampolskaya, T. A., Turchin, K. F., Anisimova, O. S., & Gusyatiner, M. M. (2006). The identification of dehydroshikimic acid accumulated in fernetation broth. The use of capillary electrophoresis for determeination of dehydroshikimic acid in enzymatic reaction mixtures for measuring activity of dehydroshikimic acid. In I. A. Krylov & G. E. Zaikov (Eds.), Industrial application of biotechnology. New York: Nova Science.

    Google Scholar 

  7. Frost, J.W., Frost, K. M., & Knop, D. R. (2002). Biocatalytic synthesis of shikimic acid. US patent application no. 6472 169 B1, 29 Oct 2002.

  8. Shirai. (2001). Microorganism belonging to the genus Citrobacter and process for producing shikimic acid. Europian patent application no.1092 766, 18 Apr 2001.

  9. Isar, J., Agarwal, L., Saran, S., & Saxena, R. K. (2006). Journal Anaerobe, 12, 231–237.

    Article  CAS  Google Scholar 

  10. Johansson, M. Analysis and modelling of shikimic acid metabolism in Escherichia coli. Available from: www.chemeng.lth.se/exjobb/013.pdf. Accessed 25 Sept 2010.

  11. Sui, R. (2008). Journal of Chemical Engineering Technology, 31(3), 469–473.

    Article  CAS  Google Scholar 

  12. Caprette, D. R. (2011). Laboratory studies in applied microbiology, Available from: www.ruf.rice.edu. Accessed 25 December 2011.

  13. Buchanan, R. E., & Gibbons, N. E. (1974). Bergey’s Manual of Determinative Bacteriology (8th ed.). Baltimore: Williams & Wilkins Co.

    Google Scholar 

  14. Gong, S. J., Lu, Z. M., Shi, J. S., Dou, W. F., Xu, H. Y., Zhou, Z. M., et al. (2011). Journal of Applied Biochemistry Biotechnology, 165, 963–977.

    Article  CAS  Google Scholar 

  15. Johansson, L., & Liden, G. (2006). Journal of Biotechnology, 126, 528–545.

    Article  CAS  Google Scholar 

  16. Kobayashi, M., Nagasawa, T., & Yamada, H. (1992). Trends in Biotechnology, 10(11), 402–408.

    Article  CAS  Google Scholar 

  17. Escalante, A., Calderon, R., Valdivia, R., Anda, R. D., Hernandez, G., Ramirez, O. T., et al. (2010). Microbial Cell Factories, 9, 21.

    Article  Google Scholar 

  18. Rangachari, S., Friedman, T. C., Hartmann, G., Hemminghaus, J. W., Kretzmer, K. A. Nissing, N. J. (2010). Processes for producing and recovering shikimic acid. US patent application no. 2010/0298599 A1, 25 Nov2010.

  19. Chandran, S. S., Yi, J., Von Draths, K. M., Daeniken, R., Weber, W., & Frost, J. W. (2003). Biotechnology Progress, 19(3), 808–814.

    Article  CAS  Google Scholar 

  20. Abusham, R. A., Rahman, R. N., Salleh, A. B., & Basri, M. (2009). Microbial Cell Factories, 9, 8–20.

    Google Scholar 

  21. Oh, A. J., Lee, H. W., Saha, R., Park, M. S., Jung, J. K., & Lee, D. Y. (2008). Journal of Microbiology and Biotechnology, 18(11), 1773–1784.

    Google Scholar 

  22. Knop, D. R., Drath, K. M., Chandran, S. S., Von Barker, J. L., Daeniken, R., Weber, W., et al. (2001). Journal of the American Chemical Society, 123, 10173–10182.

    Article  CAS  Google Scholar 

  23. Yoon, S., Hong, E., Kim, S., Lee, P., Kim, M., Yang, H., et al. (2012). Journal of Bioprocess Biosystems Engineering, 35(1–2), 167–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Indian Council of Medical Research (ICMR), Govt. of India for financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Saxena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1

HPLC of fermentation broth of strain GR-21 after 72h (JPEG 12 kb)

High Resolution Image 1 (TIFF 3269 kb)

Fig. S2

HPLC of the solution obtained from acetic acid washing of the separation column (JPEG 8 kb)

High Resolution Image 2 (TIFF 3162 kb)

Fig. S3

FTIR analysis of purified shikimic acid (JPEG 15 kb)

High Resolution Image 3 (TIFF 3324 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawat, G., Tripathi, P., Jahan, F. et al. A Natural Isolate Producing Shikimic Acid: Isolation, Identification, and Culture Condition Optimization. Appl Biochem Biotechnol 169, 2290–2302 (2013). https://doi.org/10.1007/s12010-013-0150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0150-1

Keywords

Navigation