Pretreatment of Chicken Feather Waste for Improved Biogas Production

Abstract

This study deals with the utilization of chicken feather waste as a substrate for anaerobic digestion and improving biogas production by degradation of the compact structure of the feather keratin. In order to increase the digestibility of the feather, different pretreatments were investigated, including thermal pretreatment at 120 °C for 10 min, enzymatic hydrolysis with an alkaline endopeptidase [0.53–2.66 mL/g volatile solids (VS) feathers] for 0, 2, or 24 h at 55 °C, as well as a combination of these pretreatments. The effects of the treatments were then evaluated by anaerobic batch digestion assays at 55 °C. The enzymatic pretreatment increased the methane yield to 0.40 Nm3/kg VSadded, which is 122 % improvement compared to the yield of the untreated feathers. The other treatment conditions were less effective, increasing the methane yield by 11–50 %. The long-term effects of anaerobic digestion of feathers were examined by co-digestion of the feather with organic fraction of municipal solid waste performed with and without the addition of enzyme. When enzyme was added together with the feed, CH4 yield of 0.485 Nm3/kg VS−1 d−1 was achieved together with a stable reactor performance, while in the control reactor, a decrease in methane production, together with accumulation of undegraded feather, was observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Food and Agriculture Organization of the United Nations. Available from: http://faostat.fao.org. Accessed January 15 2012.

  2. 2.

    Gessesse, A., Hatti-Kaul, R., Gashe, B. A., & Mattiasson, B. (2003). Enzyme and Microbial Technology, 32, 519–524.

    Article  CAS  Google Scholar 

  3. 3.

    European Parliament and Council. (2009). Regulation (EC) no. 1069/2009 of the European Parliament and of the Council. Official Journal of the European Union.

  4. 4.

    European Parliament and Council. (2008). Directive 2008/98/EC of the European Parliament and of the Council. Official Journal of the European Union.

  5. 5.

    Salminen, E., Einola, J., & Rintala, J. (2003). Environmental Technology, 24, 1079–1086.

    Article  CAS  Google Scholar 

  6. 6.

    Salminen, E., & Rintala, J. (2002). Bioresource Technology, 83, 13–26.

    Article  CAS  Google Scholar 

  7. 7.

    Onifade, A. A., Al-Sane, N. A., Al-Musallam, A. A., & Al-Zarban, S. (1998). Bioresource Technology, 66, 1–11.

    Article  CAS  Google Scholar 

  8. 8.

    Davidsson, Å. (2007) PhD thesis, Lund University, Lund, Sweden.

  9. 9.

    Forgács, G., Alinezhad, S., Mirabdollah, A., Feuk-Lagerstedt, E., & Sárvári Horváth, I. (2011). Journal of Environmental Sciences, 23, 1747–1753.

    Article  Google Scholar 

  10. 10.

    Coward-Kelly, G., Chang, V. S., Agbogbo, F. K., & Holtzapple, M. T. (2006). Bioresource Technology, 97, 1337–1343.

    Article  CAS  Google Scholar 

  11. 11.

    Sangali, S., & Brandelli, A. (2000). Journal of Applied Microbiology, 89, 735–743.

    Article  CAS  Google Scholar 

  12. 12.

    Wang, X., & Parsons, C. M. (1997). Poultry Science, 76, 491–496.

    CAS  Google Scholar 

  13. 13.

    Latshaw, J. D., Musharaf, N., & Retrum, R. (1994). Animal Feed Science and Technology, 47, 179–188.

    Article  Google Scholar 

  14. 14.

    Papadopoulos, M. C. (1989). Biological Wastes, 29, 123–138.

    Article  Google Scholar 

  15. 15.

    Deivasigamani, B., & Alagappan, K. M. (2008). Journal of Environmental Biology, 29, 933–936.

    CAS  Google Scholar 

  16. 16.

    Ramnani, P., & Gupta, R. (2007). World Journal of Microbiology and Biotechnology, 23, 1537–1540.

    Article  CAS  Google Scholar 

  17. 17.

    Deublein, D., & Steinhauser, A. (2008). Biogas from waste and renewable resources (1st ed.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  18. 18.

    Sung, S., & Liu, T. (2003). Chemosphere, 53, 43–52.

    Article  CAS  Google Scholar 

  19. 19.

    Angelidaki, I., & Ahring, B. K. (1993). Applied Microbiology and Biotechnology, 38, 560–564.

    Article  CAS  Google Scholar 

  20. 20.

    Cuetos, M. J., Gómez, X., Otero, M., & Morán, A. (2008). Biochemical Engineering Journal, 40, 99–106.

    Article  CAS  Google Scholar 

  21. 21.

    Hansen, T. L., Schmidt, J. E., Angelidaki, I., Marca, E., Jansen, J. I. C., Mosbæk, H., et al. (2004). Waste Management, 24, 393–400.

    Article  CAS  Google Scholar 

  22. 22.

    ISO 10780: 1994. (1994) .Stationary source emissions—measurement of velocity and volume flowrate of gas streams in ducts.

  23. 23.

    APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Wasington DC.: American Public Health Association.

    Google Scholar 

  24. 24.

    Larsson, M. (1997). Enkla analysmethoder för driftkontroll vid avloppspreningsverk. Svenska vatten- och avloppsverksföreningen.

  25. 25.

    Cardamone, J. M. (2010). Journal of Molecular Structure, 969, 97–105.

    Article  CAS  Google Scholar 

  26. 26.

    Montgomery, D. C. (2005). Design and analysis of experiments (6th ed.). New Jersey: Wiley.

    Google Scholar 

  27. 27.

    Palatsi, J., Viñas, M., Guivernau, M., Fernandez, B., & Flotats, X. (2011). Bioresource Technology, 102, 2219–2227.

    Article  CAS  Google Scholar 

  28. 28.

    Vonhoff, S., Condliffe, J., & Schiffter, H. (2010). Journal of Pharmaceutical and Biomedical Analysis, 51, 39–45.

    Article  CAS  Google Scholar 

  29. 29.

    Dreissig, I., Machill, S., Salzer, R., & Krafft, C. (2009). Spectrochimica Acta A, 71, 2069–2075.

    Article  Google Scholar 

  30. 30.

    Barone, J. R., & Schmidt, W. F. (2006). Bioresource Technology, 97, 233–242.

    Article  CAS  Google Scholar 

  31. 31.

    Salminen, E. A., & Rintala, J. A. (2002). Water Research, 36, 3175–3182.

    Article  CAS  Google Scholar 

  32. 32.

    Cuetos, M. J., Gómez, X., Otero, M., & Morán, A. (2010). Waste Management, 30, 1780–1789.

    Article  CAS  Google Scholar 

  33. 33.

    Papadopoulos, M. C. (1985). Agricultural Wastes, 14, 275–290.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Swedish Excellence Center Waste Refinery and by the Research and Education Board of the University of Borås.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gergely Forgács.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Forgács, G., Lundin, M., Taherzadeh, M.J. et al. Pretreatment of Chicken Feather Waste for Improved Biogas Production. Appl Biochem Biotechnol 169, 2016–2028 (2013). https://doi.org/10.1007/s12010-013-0116-3

Download citation

Keywords

  • Anaerobic digestion
  • Feather waste
  • Pretreatment
  • Municipal solid waste
  • Co-digestion