Skip to main content
Log in

Characterization of Novel EGs Reconstructed from Bacillus subtilis Endoglucanase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial cellulases have taken on satisfactory application performance and economic value in detergent industry. Neutral endoglucanase (EG1) gene was cloned from Bacillus subtilis and expressed Pichia pastoris in our previous study. Redesigned endoglucanases enhanced cellulase domain, added and deleted carbohydrate-binding module (CBM), named EG2, EG3, and EG4, respectively, were constructed in this study. The redesigned EG genes were expressed in P. pastoris, and their characters were also discussed. The optimal temperature and pH value of the all EGs was 65 °C and 6.0, respectively, where their enzymatic activities in P. pastoris cultivation supernatant reached 867, 651, 966, and 881 U/mL. EG2 showed 24.9 % enzymatic activity loss compared to natural endoglucanase. EG4 showed specific activity 30 % loss and thermostability decrease compared to EG1, which suggested CBM played an important role in improving the catalytic power and heat stability of cellulase family which attached. The specific activity of EG2 and EG3 showed similar to EG1, which suggested neither enhancement of CD nor CBM to endoglucanase can improve its catalytic power, which might rest with its intact topologic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jarvis, M. (2003). Nature, 426(6967), 611–612.

    Article  CAS  Google Scholar 

  2. Lynd, L. R., & Zhang, Y. (2002). Biotechnology and Bioengineering, 77(4), 467–475.

    Article  CAS  Google Scholar 

  3. Marchessault, R. H., Sundarajan, P. R. (1993). New York: Academic Press, 11–95

  4. Schmoll, M., & Kubicek, C. P. (2003). Acta Microbiologica Et Immunologica Hungarica, 50(2–3), 125–145.

    Article  CAS  Google Scholar 

  5. Beguin, P., Millet, J., Chauvaux, S., Salamitou, S., Tokatlidis, K., Navas, J., et al. (1992). Biochemical Society Transactions, 20(1), 42–46.

    CAS  Google Scholar 

  6. Davies, G., & Henrissat, B. (1995). Structure, 3(9), 853–859.

    Article  CAS  Google Scholar 

  7. Linder, M., Nevanen, T., Soderholm, L., Bengs, O., & Teeri, T. T. (1998). Biotechnology and Bioengineering, 60(5), 642–647.

    Article  CAS  Google Scholar 

  8. Bae, H. J., Turcotte, G., Chamberland, H., Karita, S., & Vezina, L. P. (2003). FEMS Microbiology Letters, 227(2), 175–181.

    Article  CAS  Google Scholar 

  9. Black, G. W., Rixon, J. E., Clarke, J. H., Hazlewood, G. P., Theodorou, M. K., Morris, P., et al. (1996). Biochemical Journal, 319(Pt 2), 515–520.

    CAS  Google Scholar 

  10. Meissner, K., Wassenberg, D., & Liebl, W. (2000). Molecular Microbiology, 36(4), 898–912.

    Article  CAS  Google Scholar 

  11. Sunna, A., Gibbs, M. D., & Bergquist, P. L. (2000). Biochemical Journal, 346(Pt 3), 583–586.

    Article  CAS  Google Scholar 

  12. Guan, X. Y., Wu, Q., Xu, B., & Chen, H. (2009). Chinese Journal of Bioprocess Engineering, 3, 68–72.

    Google Scholar 

  13. Wu, Z. F., Zeng, M., & Wu, Q. (2009). Journal of Agricultural Biotechnology, 17(3), 529–535.

    CAS  Google Scholar 

  14. Mandels, M., Andreotti, R., Roche, C. (1976). Biotechnology and Bioengineering Symposium, (6), 21–33.

  15. Chen, H., Liao, J. H., Guan, X. Y., & Wu, Q. (2008). Hereditas, 30(5), 649–654.

    CAS  Google Scholar 

  16. Liu, G., Tian, S. L., Deng, X., & Xing, M. (2006). World Journal of Microbiology and Biotechnology, 22(12), 1301–1305.

    Article  CAS  Google Scholar 

  17. Cornell, W., & Nam, K. (2009). Current Topics in Medicinal Chemistry, 9(9), 844–853.

    Article  CAS  Google Scholar 

  18. Zhang, Y. Z., Gao, P. J., Ma, L. P., Shi, D. X., & Pang, S. J. (1998). Applied Physics A: Materials Science and Processing, 67(4), 83–85.

    Google Scholar 

  19. Xiao, Z. Z., Qu, Y. B., & Wang, T. H. (2001). Biotechnology Letters, 23(9), 711–715.

    Article  CAS  Google Scholar 

  20. Yan, B. X., & Sun, Y. (1997). Journal of Protein Chemistry, 16(1), 59–66.

    Article  CAS  Google Scholar 

  21. Zhuang, S., Li, Y. H., Ding, G. J., & Zhao, F. K. (2007). Applied Microbiology and Biotechnology, 75, 1327–1334.

    Article  Google Scholar 

  22. Nakamura, A., Fukumori, F., Horinouchi, S., Masaki, H., Kudo, T., Uozumi, T., et al. (1991). The Journal of Biological Chemistry, 266(3), 1579–1583.

    CAS  Google Scholar 

  23. Wolfgang, D. E., & Wilson, D. B. (1999). Biochemistry, 38(30), 9746–9751.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support for this work from the National Natural Science Foundation of China (grant no. 30671530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zi-Zhong, T., Zhen-Fang, W., Hui, C. et al. Characterization of Novel EGs Reconstructed from Bacillus subtilis Endoglucanase. Appl Biochem Biotechnol 169, 1764–1773 (2013). https://doi.org/10.1007/s12010-013-0111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0111-8

Keywords

Navigation