Skip to main content
Log in

Endopolysaccharides from Ganoderma resinaceum, Phlebia rufa, and Trametes versicolor Affect Differently the Proliferation Rate of HepG2 Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fungi have been used for medicinal purposes for long time by Asian countries, being a putative source of powerful new phytopharmaceuticals such as polysaccharides. The aim of this study was to extract endopolysaccharides (IPS) from Ganoderma resinaceum, Phlebia rufa, and Trametes versicolor, grown under submerged culture, to compare crude IPS production, total carbohydrate, and protein yield, and to study the effect of these IPS on HepG2 cells proliferation rate. Total biomass produced by G. resinaceum, P. rufa, and T. versicolor was (in gram per liter) 3.32 ± 0.80, 5.42 ± 0.58, and 4.2 ± 1.29 and the IPS yield (as the biomass percent) was 9.9 ± 0.05, 29.0 ± 6.3, and 9.1 ± 3.1 %, respectively. Characterization of IPS has shown different proportion between total sugar and protein being, on average 6.04, 10.74, and 22.62, for G. resinaceum, T. versicolor, and P. rufa, respectively. The IPS effect, at 50, 100, and 200 μg mL−1 on HepG2 cell growth and viability was negligible for G. resinaceum and P. rufa but, in the case of T. versicolor, 200 μg mL−1 of IPS evoked 40 % reduction on cell growth. The results suggest that the intracellular polysaccharides from T. versicolor are a potential source for bioactive molecules with anti-proliferative properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lindequist, U., Niedermeyer, T. H. J., & Julich, W.-D. (2005). Evidence-based Complementary and Alternative Medicine, 2, 285–299.

    Article  Google Scholar 

  2. Ramberg, J. E., Nelson, E. D., & Sinnott, R. A. (2010). Nutritional Journal, 9, 1–22.

    Google Scholar 

  3. El-Mekkawy, S., Meselhy, M. R., Nakamura, N., Tezuka, Y., Hattori, M., Kakiuchi, N., et al. (1998). Phytochemistry, 49, 1651–1657.

    Article  CAS  Google Scholar 

  4. Eo, S. K., Kim, Y. S., Lee, C. K., & Han, S. S. (1999). Journal of Ethnopharmacology, 68, 129–136.

    Article  CAS  Google Scholar 

  5. Hirasawa, M., Shouji, N., Neta, T., Fukushima, K., & Takada, K. (1999). International Journal of Antimicrobial Agents, 11, 151–157.

    Article  CAS  Google Scholar 

  6. Josef, S., Sabulal, B., George, V., Smina, T. P., & Janardhanan, K. K. (2009). Scientia Pharmaceutica, 77, 111–121.

    Article  Google Scholar 

  7. Berovic, M., Habijanic, J., Zore, I., Wraber, B., Hodzar, D., Boh, B., et al. (2003). Journal of Biotechnology, 103, 77–86.

    Article  CAS  Google Scholar 

  8. Yuen, J. W. M., Gohel, M. D. I., & Ng, C. F. (2011). Journal of Ethnopharmacology, 135, 711–718.

    Article  CAS  Google Scholar 

  9. Kimura, Y. (2005). In vivo, 19, 37–60.

  10. Lee, J. S., Kim, M. O., Cho, K. Y., Cho, J. H., Chang, S. Y., & Nam, D. H. (2006). Journal of Microbiology, 44, 29–34.

    CAS  Google Scholar 

  11. Sliva, D. (2003). Integrative Cancer Therapies, 2, 358–364.

    Article  Google Scholar 

  12. Chen, C. F., Yang, X. T., Li, X. Q., Mi, K., & Yang, K. Y. (2007). Wei Sheng Wu Xue Bao. (Acta Microbiologica Sinica), 47, 628–633.

    CAS  Google Scholar 

  13. Boddy, L., & Rayner, A. D. M. (1983). Transactions of the British Mycological Society, 80, 437–448.

    Article  Google Scholar 

  14. Dinis, M. J., Bezerra, R. M. F., Nunes, F., Dias, A. A., Guedes, C. V., Ferreira, L. M. M., et al. (2009). Bioresource Technology, 100, 4829–4835.

    Article  CAS  Google Scholar 

  15. Tang, Y. J., & Zhong, J. J. (2002). Enyzme and Microbial Technology, 31, 20–38.

    Article  CAS  Google Scholar 

  16. Silva, M. L. C., Martinez, P. F., Izeli, N. L., Silva, I. R., Vasconcelos, A. F. D., & Cardoso, M. S. (2006). Quimica Nova, 29, 85–92.

    Article  Google Scholar 

  17. Krcmar, P., Novotny, C., Marais, M.-F., & Joseleau, J. P. (1999). International Journal of Biological Macromolecules, 24, 61–64.

    Article  CAS  Google Scholar 

  18. Rau, U., Kuenz, A., Wray, V., Nimtz, M., Wrenger, J., & Cicek, H. (2009). Applied Microbiology and Biotechnology, 81, 827–837.

    Article  CAS  Google Scholar 

  19. Jiménez-Medina, E., Berruguilla, E., Romero, I., Algarra, I., Collado, A., Garrido, F., et al. (2008). BMC Cancer, 8, 78.

    Article  Google Scholar 

  20. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Lee, W. Y., Park, Y., Ahn, J. K., Ka, K. H., & Park, S. Y. (2007). Enzyme and Microbial Technology, 40, 249–254.

    Article  CAS  Google Scholar 

  23. Chen, L., Pan, J., Li, X., Zhou, Y., Meng, Q., & Wang, Q. (2011). International Immunopharmacology, 11, 255–259.

    Article  CAS  Google Scholar 

  24. Kim, Y. O., Park, H. W., Kim, J. H., Lee, J. Y., Moon, S. H., & Shin, C. S. (2006). Life Sciences, 79, 72–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by European Union Funds (FEDER/COMPETE—Operational Competitiveness Programme), by national funds (FCT—Portuguese Foundation for Science and Technology) under the project FCOMP-01-0124-FEDER-022696, and by a research project grant (PEst-C/AGR/UI4033/2011) to AMS, DLS, AAD, and RMB. We acknowledge Professor Carlos Palmeira (University of Coimbra, Portugal) for supplying the HepG2 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélia M. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, A.M., Miranda, A., Fernandes, E. et al. Endopolysaccharides from Ganoderma resinaceum, Phlebia rufa, and Trametes versicolor Affect Differently the Proliferation Rate of HepG2 Cells. Appl Biochem Biotechnol 169, 1919–1926 (2013). https://doi.org/10.1007/s12010-013-0107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0107-4

Keywords

Navigation