Abstract
The utility of rhamnolipids in industry is currently limited due to the high constraints in its economic production. In this scenario, the novel utility of sodium dodecyl sulphate (SDS) as carbon source could serve as promising cost-effective strategy. Screening of effective SDS biodegraders led to the isolation of Pseudomonas aeruginosa S15 capable of concomitant SDS degradation and biosurfactant synthesis. SDS-based rhamnolipid production was proved on SDS minimal agar plates using cetyl trimethylammonium bromide–methylene blue method and optimised in SDS-based minimal salt (SBS) medium. SDS proved to be an ideal carbon source for rhamnolipid synthesis with a high substrate to product conversion rate yielding 6.9 g/l of rhamnolipids from 1 g/l SDS in 5 days. Fast atom bombardment mass spectroscopy analysis of the purified biosurfactant proved the presence of mono- and di-rhamnolipids, viz., Rha-C10-C10, Rha-C10-C12 and Rha-Rha-C10-C10 with surface active properties. The secreted rhamnolipids were not utilised by S15 as a carbon source, but it caused a dispersion of bacterial biofilms in SBS medium. To the best of our knowledge, this is the first report on bioconversion of synthetic detergent to biodetergent. This SDS-based novel methodology presents a more economised mode of rhamnolipid synthesis utilising SDS as sole carbon source.
This is a preview of subscription content, access via your institution.





References
Deschenes, L., Lafrance, P., Villeneuve, J. P., & Samson, R. (1996). Applied Microbiology and Biotechnology, 46, 638–646.
Chaturvedi, V., & Kumar, A. (2010). International Journal of Applied Biology and Pharmaceutical Technology, 2, 630–633.
Bardach, J. E., Fujiya, M., & Holl, A. (1965). Science, 148, 1605–1607.
Marrakchi, S., & Maibach, H. I. (2006). Skin Pharmacology and Physiology, 19, 177–180.
Chahine, L., Sempson, N., & Wagoner, C. (1997). Compendium of Continuing Education in Dentistry, 18, 1238.
Ostroumov, S. A. (2003). Hydrobiologia, 500, 341–344.
Xiaoli, Y., Xuegang, L., Changbin, S., Shihong, C., & Qiang, W. (2000). Colloids and Surfaces A, 175, 249–255.
Rosety, M., Ordonez, F. J., Rosety Rodriguez, M., Rosety, J. M., Carrasco, C., & Ribelles, A. (2001). Histology and Histopathology, 16, 839–843.
Aizdaicher, N. A., & Markina, Z. V. (2006). Russian Journal of Marine Biology, 32, 45–49.
Barbieri, E., Ngan, P. V., & Gomes, V. (1998). Revista Brasileira de Biologia, 58, 263.
Bantseev, V., McCanna, D., Banh, A., Wong, W. W., Moran, K. L., Dixon, D. G., et al. (2003). Toxicological Sciences, 73, 98–107.
Susmi, T. S., Rebello, S., Jisha, M. S., & Sherief, P. M. (2010). Fishery Technology, 47(2), 157–162.
Ankley, G. T., & Burkhard, L. P. (1992). Environmental Toxicology and Chemistry, 11, 1235–1248.
Kanchi, S., Niranjan, T., Babu Naidu, K., & Naidu Venkatasubba, N. (2012). International Journal of Research in Chemistry and Environment, 2, 144–156.
Lewis, M. A. (1991). Water Research, 25, 101–113.
Cserhati, T., Forgacs, E., & Oros, G. (2002). Environment International, 28, 337–348.
Cameotra, S., Makkar, R., Kaur, J., & Mehta, S. K. (2010). In R. Sen (Ed.), Biosurfactants, vol. 672: Advances in experimental medicine and biology (pp. 261–280). New York: Springer.
Ron, E. Z., & Rosenberg, E. (2001). Environmental Microbiology, 3, 229–236.
Lang, S. (2002). Current Opinion in Colloid & Interface Science, 7, 12–20.
Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). AMB Express, 1, 5.
Muller, M. M., Kugler, J. H., Henkel, M., Gerlitzki, M., Hormann, B., Pohnlein, M., et al. (2012). Journal of Biotechnology. http://dx.doi.org/10.1016/j.jbiotec.2012.05.022
Muthusamy, K., Gopalakrishnan, S., Ravi, T. K., & Sivachidambaram, P. (2008). Current Science, 94, 736–747.
Leitermann, F., Walter, V., Syldatk, C., Hausmann, R., & Timmis, K. N. (2010). In K. N. Timmis (Ed.). Handbook of hydrocarbon and lipid microbiology (pp. 3037–3051). Berlin–Heidelberg: Springer.
Yeldho, D., Rebello, S., & Jisha, M. S. (2011). Bulletin of Environmental Contamination and Toxicology, 86, 110–113.
Hayashi, K. (1975). Analytical Biochemistry, 67, 503–506.
Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). Journal of Bacteriology, 173, 697–703.
Wilson, K. (2001). Current Protocols in Molecular Biology, 00, 2.4.1–2.4.5.
Siegmund, I., & Wagner, F. (1991). Biotechnology Techniques, 5, 265–268.
Ellis, A. J., Hales, S. G., Ur-Rehman, N. G. A., & White, G. F. (2002). Applied and Environmental Microbiology, 68, 31–36.
Chandrasekaran, E. V., & Bemiller, J. N. (1980). In R. L. Whistler & M. L. Wolfrom (Eds.), Methods in carbohydrate chemistry, vol. 8 (pp. 89–96). New York: Academic.
Benincasa, M., Abalos, A., Oliveira, I., & Manresa, A. (2004). Antonie Van Leeuwenhoek, 85, 1–8.
Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H., et al. (2009). Process Biochemistry, 44, 302–308.
Bodour, A. A., & Miller-Maier, R. M. (1998). Journal of Microbiological Methods, 32, 273–280.
Pratt, L. A., & Kolter, R. (1998). Molecular Microbiology, 30, 285–293.
Schleheck, D., Barraud, N., Klebensberger, J., Webb, J. S., McDougald, D., Rice, S. A., et al. (2009). PLoS One, 4, e5513.
Klebensberger, J., Lautenschlager, K., Bressler, D., Wingender, J., & Philipp, B. (2007). Environmental Microbiology, 9, 2247–2259.
Asok, A., & Jisha, M. (2012). Water, Air, and Soil Pollution, 223(8), 5039–5048.
Pinzon, N., & Ju, L.-K. (2009). Applied Microbiology and Biotechnology, 82, 975–981.
Abboud, M. M., Khleifat, K. M., Batarseh, M., Tarawneh, K. A., Al-Mustafa, A., & Al-Madadhah, M. (2007). Enzyme and Microbial Technology, 41, 432–439.
Zhu, L., Yang, X., Xue, C., Chen, Y., Qu, L., & Lu, W. (2012). Bioresource Technology, 117, 208–213.
Mulligan, C. N., & Gibbs, B. F. (1993). In N. Kosaric (Ed.), Biosurfactants, production, properties and applications (pp. 329–372). New York: Marcel Dekker.
Deziel, E., Lepine, F., Milot, S., & Villemur, R. (2000). Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, 1485(2–3), 145–152.
Tuleva, B. K., Ivanov, G. R., & Christova, N. E. (2002). Zeitschrift für Naturforschung. Section C, 57, 356–360.
Benincasa, M., Contiero, J., Manresa, M. A., & Moraes, I. O. (2002). Journal of Food Engineering, 54, 283–288.
Kaczorek, E., Chrzanowski, L., Pijanowska, A., & Olszanowski, A. (2008). Bioresource Technology, 99, 4285–4291.
Zeng, G., Fu, H., Zhong, H., Yuan, X., Fu, M., Wang, W., et al. (2007). Biodegradation, 18, 303–310.
Lewis, K. (2001). Antimicrobial Agents and Chemotherapy, 45, 999–1007.
Gilbert, P., Maira-Litran, T., McBain, A. J., Rickard, A. H., & Whyte, F. W. (2002). Advances in Microbial Physiology, 46, 203–256.
Shapiro, J. A. (1998). Annual Review of Microbiology, 52, 81–104.
Parsek, M. R., & Greenberg, E. P. (2000). Proceedings of the National Academy of Science, 97, 8789.
Hassett, D. J., Ma, J. F., Elkins, J. G., McDermott, T. R., Ochsner, U. A., West, S. E. H., et al. (1999). Molecular Microbiology, 34, 1082–1093.
Acknowledgment
The authors are grateful to Kerala State Council for Science Technology and Environment for funding and National Institute of Interdisciplinary Science and Technology (Thiruvananthapuram) for FAB-MS analysis.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rebello, S., Asok, A.K., Joseph, S.V. et al. Bioconversion of Sodium Dodecyl Sulphate to Rhamnolipid by Pseudomonas aeruginosa: A Novel and Cost-Effective Production Strategy. Appl Biochem Biotechnol 169, 418–430 (2013). https://doi.org/10.1007/s12010-012-9988-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-012-9988-x