Skip to main content
Log in

Biochemical Basis of Mercury Remediation and Bioaccumulation by Enterobacter sp. EMB21

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aims of this study were to isolate metal bioaccumulating bacterial strains and to study their applications in removal of environmental problematic heavy metals like mercury. Five bacterial strains belonging to genera Enterobacter, Bacillus, and Pseudomonas were isolated from oil-spilled soil. Among these, one of the strains Enterobacter sp. EMB21 showed mercury bioaccumulation inside the cells simultaneous to its bioremediation. The bioaccumulation of remediated mercury was confirmed by transmission electron microscopy and energy dispersive X-ray. The mercury-resistant loci in the Enterobacter sp. EMB21 cells were plasmid-mediated as confirmed by transformation of mercury-sensitive Escherichia coli DH5α by Enterobacter sp. EMB21 plasmid. Effect of different culture parameters viz-a-viz inoculum size, pH, carbon, and nitrogen source revealed that alkaline pH and presence of dextrose and yeast extract favored better remediation. The results indicated the usefulness of Enterobacter sp. EMB21 for the effective remediation of mercury in bioaccumulated form. The Enterobacter sp. EMB21 seems promising for heavy metal remediation wherein the remediated metal can be trapped inside the cells. The process can further be developed for the synthesis of valuable high-end functional alloy, nanoparticles, or metal conjugates from the metal being remediated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C.-G. (2001). Trends in Biotechnology, 19, 15–20.

    Article  CAS  Google Scholar 

  2. Gadd, G. M. (2004). Geoderma, 122, 109–119.

    Article  CAS  Google Scholar 

  3. Haferburg, G., & Kothe, E. (2007). Journal of Basic Microbiology, 47, 453–467.

    Article  CAS  Google Scholar 

  4. Lloyd, J. R., Byrne, J. M., & Coker, V. S. (2011). Current Opinion in Biotechnology, 22, 509–515.

    Article  CAS  Google Scholar 

  5. Narayanan, K. B., & Sakthivel, N. (2010). Advances in Colloid and Interface Science, 156, 1–13.

    Article  CAS  Google Scholar 

  6. Hylander, L. D., & Goodsite, M. E. (2006). Science of the Total Environment, 368, 352–370.

    Article  CAS  Google Scholar 

  7. Wang, Q., Daekeun, K., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Environmental Pollution, 131, 323–336.

    Article  Google Scholar 

  8. Bafana, A., Krishnamurthi, K., Patil, M., & Chakrabarti, T. (2010). Journal of Hazardous Materials, 177, 481–486.

    Article  CAS  Google Scholar 

  9. Pepi, M., Gaggi, C., Bernardini, E., Focardi, S., Lobianco, A., Ruta, M., Nicolardi, V., Volterrani, M., & Gasperini, S. (2011). International Biodeterioration & Biodegradation, 65, 85–91.

    Article  CAS  Google Scholar 

  10. Lee, S. E., Chung, J. W., Won, H. S., Lee, D. S., & Lee, Y.-W. (2012). Bulletin of Environmental Contamination and Toxicology, 88, 239–244.

    Article  CAS  Google Scholar 

  11. Green-Ruiz, C. (2006). Bioresource Technology, 97, 1907–1911.

    Article  CAS  Google Scholar 

  12. Das, S. K., Das, A. R., & Guha, A. K. (2007). Environmental Science & Technology, 41, 8281–8287.

    Article  CAS  Google Scholar 

  13. Sari, A., & Tuzen, M. (2009). Journal of Hazardous Materials, 171, 500–507.

    Article  CAS  Google Scholar 

  14. Chen, J. Z., Tao, X. C., Xu, J., Zhang, T., & Liu, Z. L. (2005). Process Biochemistry, 40, 3675–3679.

    Article  CAS  Google Scholar 

  15. Bayramoğlu, G., Tuzun, I., Celik, G., Yilmaz, M., & Arica, M. Y. (2006). International Journal of Mineral Processing, 81, 35–43.

    Article  Google Scholar 

  16. Barkay, T., & Wagner-Döbler, I. (2005). Advances in Applied Microbiology, 57, 1–53.

    Article  CAS  Google Scholar 

  17. Zhang, W., Chen, L., & Liu, D. (2012). Applied Microbiology and Biotechnology, 93, 1305–1314.

    Article  CAS  Google Scholar 

  18. Ruiz, O. N., Alvarez, D., Gonzalez-Ruiz, G., & Torres, C. (2011). BMC Biotechnology, 11, 2–8.

    Article  Google Scholar 

  19. Deng, X., & Jia, P. (2011). Bioresource Technology, 102, 3083–3088.

    Article  CAS  Google Scholar 

  20. Kiyono, M., & Pan-Hou, H. (2006). Journal of Health Science, 52, 199–204.

    Article  CAS  Google Scholar 

  21. Altschul, S. F., Madden, T. L., Schaeffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  22. Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). Journal of Computational Biology, 7, 203–214.

    Article  CAS  Google Scholar 

  23. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K., & Lim, Y. W. (2007). International Journal of Systematic and Evolutionary Microbiology, 57, 2259–2261.

    Article  CAS  Google Scholar 

  24. Izaki, K., Tashiro, Y., & Funaba, T. (1974). Journal of Biochemistry, 75, 591–599.

    CAS  Google Scholar 

  25. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  26. David, G. F. X., Herbert, J., & Wright, G. D. S. (1973). Journal of Anatomy, 115, 79–97.

    CAS  Google Scholar 

  27. Canstein, H. V., Li, Y., Timmis, K. N., Deckwer, W.-D., & Wagner-Döbler, I. (1999). Applied and Environmental Microbiology, 65, 5279–5284.

    Google Scholar 

  28. Barkay, T., Miller, S. M., & Summers, A. O. (2003). FEMS Microbiology Reviews, 27, 355–384.

    Article  CAS  Google Scholar 

  29. Yamaguchi, A., Tamang, D. G., & Saier, M. H., Jr. (2007). Water, Air, and Soil Pollution, 182, 219–234.

    Article  CAS  Google Scholar 

  30. Bogdanova, E. S., Mindlin, S. Z., Kalyaeva, E. S., & Nikiforov, V. G. (1988). FEBS Letters, 234, 280–282.

    Article  CAS  Google Scholar 

  31. Robinson, J. B., & Tuovinen, O. H. (1984). Microbiological Reviews, 48, 95–124.

    CAS  Google Scholar 

  32. de Sotero-Martins, A., Jesus, M. S., Lacerda, M., Moreira, J. C., Filgueiras, A. L. L., & Barrocas, P. R. G. (2008). Brazilian J Microbiol., 39, 307–310.

    Article  Google Scholar 

  33. Essa, A. M. M., Julian, D. J., Kidd, S. P., Brown, N. L., & Hobman, J. L. (2003). Antimicrobial Agents and Chemotherapy, 47, 1115–1119.

    Article  CAS  Google Scholar 

  34. Belzile, N., Wu, G. J., Chen, Y. W., & Appanna, V. D. (2006). Science of the Total Environment, 367, 704–714.

    Article  CAS  Google Scholar 

  35. Głuszcz, P., Petera, J., & Ledakowicz, S. (2011). Bioprocess and Biosystems Engineering, 34, 275–285.

    Article  Google Scholar 

  36. Hamdy, M. K., & Noyes, O. R. (1975). Applied Microbiology, 30, 424–432.

    CAS  Google Scholar 

  37. Pan-Hou, H. S., Nishimoto, M., & Imura, N. (1981). Archives of Microbiology, 130, 93–95.

    Article  CAS  Google Scholar 

  38. Bafana, A. (2011). Biometals, 24, 301–309.

    Article  CAS  Google Scholar 

  39. Chien, M. F., Narita, M., Lin, K. H., Matsui, K., Huang, C. C., & Endo, G. (2011). Journal of Bioscience and Bioengineering, 110, 94–98.

    Article  Google Scholar 

  40. Sinha, A., & Khare, S. K. (2011). Bioresource Technology, 102, 4281–4284.

    Article  CAS  Google Scholar 

  41. Nascimento, A. M. A., & Chartone-Souza, E. (2003). Genetics and Molecular Research, 2, 92–101.

    Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the funds provided by the Department of Biotechnology (Govt. of India) for supporting the work. A. Sinha is grateful to The University Grants commission (Govt. of India) for the senior research fellowship. S. Kumar is thankful to the Council of Scientific and Industrial Research (Govt. of India) for the award of senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Khare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, A., Kumar, S. & Khare, S.K. Biochemical Basis of Mercury Remediation and Bioaccumulation by Enterobacter sp. EMB21. Appl Biochem Biotechnol 169, 256–267 (2013). https://doi.org/10.1007/s12010-012-9970-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9970-7

Keywords

Navigation