Applied Biochemistry and Biotechnology

, Volume 169, Issue 1, pp 239–249 | Cite as

Preparation of Hyaluronic Acid Micro-Hydrogel by Biotin–Avidin-Specific Bonding for Doxorubicin-Targeted Delivery

Article

Abstract

Hyaluronic acid is a naturally ionic polysaccharide with cancer cell selectivity. It is an ideal candidate material for delivery of anticancer agents. In this study, hyaluronic acid (HA) micro-hydrogel loaded with anticancer drugs was prepared by the biotin–avidin system approach. Firstly, carboxyl groups on HA were changed into amino groups with adipic acid dihydrazide (ADH) to graft with biotin by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride named as HA–biotin. When HA–biotin solution mixed with doxorubicin hydrochloride (DOX·HCl) was blended with neutravidin, the micro-hydrogels would be formed with DOX loading. If excess biotin was added into the microgel, it would be disjointed, and DOX will be released quickly. The results of the synthesis procedure were characterized by 1H-NMR and FTIR; ADH and biotin have been demonstrated to graft on the HA molecule. A field emission scanning electron microscope was used to observe morphologies of HA micro-hydrogels. Furthermore, the in vitro DOX release results revealed that the release behaviors can be adjusted by adding biotin. Therefore, the HA micro-hydrogel can deliver anticancer drugs efficiently, and the rate of release can be controlled by biotin-specific bonding with the neutravidin. Consequently, the micro-hydrogel will perform the promising property of switching in the specific site in cancer therapy.

Keywords

Hyaluronic acid Biotin–avidin Micro-hydrogel Drug delivery DOX 

References

  1. 1.
    Bae, K. H., Yoon, J. J., & Park, T. G. (2006). Fabrication of hyaluronic acid hydrogel beads for cell encapsulation. Biotechnology Progress, 22, 297–302.CrossRefGoogle Scholar
  2. 2.
    Jeon, O., Song, S. J., Lee, K. J., Park, M. H., Lee, S. H., Hahn, S. K., et al. (2007). Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydrate Polymers, 70, 251–257.CrossRefGoogle Scholar
  3. 3.
    Luo, Y., Ziebell, M. R., & Prestwich, G. D. (2000). A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules, 1, 208–218.CrossRefGoogle Scholar
  4. 4.
    Yadav, A. K., Mishra, P., & Agrawal, G. P. (2008). An insight on hyaluronic acid in drug targeting and drug delivery. Journal of Drug Targeting, 16, 91–107.CrossRefGoogle Scholar
  5. 5.
    Ossipov, D. A. (2010). Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opinion on Drug Delivery, 7, 681–703.CrossRefGoogle Scholar
  6. 6.
    Lee, H., Ahn, C. H., & Park, T. G. (2009). Poly [lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromolecular Bioscience, 9, 336–342.CrossRefGoogle Scholar
  7. 7.
    Park, W., Bae, B., Kim, Y. H., & Na, K. (2010). Cancer cell specific targeting of nanogels from acetylated hyaluronic acid with low molecular weight. European Journal of Pharmaceutical Sciences, 40, 367–375.CrossRefGoogle Scholar
  8. 8.
    Cho, H. J., Yoon, I. S., Yoon, H. Y., Koo, H., Jin, Y. J., Ko, S. H., et al. (2012). Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials, 33, 1190–1200.CrossRefGoogle Scholar
  9. 9.
    Yadav, A. K., Mishra, P., Mishra, A. K., Jain, S., & Agrawal, G. P. (2007). Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine: Nanotechnology, Biology and Medicine, 3, 246–257.CrossRefGoogle Scholar
  10. 10.
    Vercruysse, K. P., Marecak, D. M., Marecek, J. F., & Prestwich, G. D. (1997). Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjugate Chemistry, 8, 686–694.CrossRefGoogle Scholar
  11. 11.
    Luo, Y., & Prestwich, G. D. (1999). Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjugate Chemistry, 10, 755–763.CrossRefGoogle Scholar
  12. 12.
    Prestwich, G. D., Marecak, D. M., Marecek, J. F., Vercruysse, K. P., & Ziebell, M. R. (1998). Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. Journal of Controlled Release, 53, 93–103.CrossRefGoogle Scholar
  13. 13.
    Xiong, M. P., Forrest, M. L., Angela, L., & Kwon, G. S. (2007). Biotin-triggered release of poly (ethylene glycol)-avidin from biotinylated polyethylenimine enhances in vitro gene expression. Bioconjugate Chemistry, 18, 746–753.CrossRefGoogle Scholar
  14. 14.
    Liu, Y., Liu, J., Xu, J., Feng, S., & Davis, T. P. (2010). Biodegradable PEG hydrogels cross-linked using biotin-avidin interactions. Australian Journal of Chemistry, 63, 1413–1417.CrossRefGoogle Scholar
  15. 15.
    MacKinnon, N., Guérin, G., Liu, B., Gradinaru, C. C., & Macdonald, P. M. (2009). Liposome–hydrogel bead complexes prepared via biotin–avidin conjugation. Langmuir, 25, 9413–9423.CrossRefGoogle Scholar
  16. 16.
    Kim, J., Nayak, S., & Lyon, L. A. (2005). Bioresponsive hydrogel microlenses. Journal of the American Chemical Society, 127, 9588–9592.CrossRefGoogle Scholar
  17. 17.
    Kim, J., Singh, N., & Lyon, L. A. (2007). Influence of ancillary binding and nonspecific adsorption on bioresponsive hydrogel microlenses. Biomacromolecules, 8, 1157–1161.CrossRefGoogle Scholar
  18. 18.
    Clapper, J. D., Pearce, M. E., Guymon, C. A., & Salem, A. K. (2008). Biotinylated biodegradable nanotemplated hydrogel networks for cell interactive applications. Biomacromolecules, 9, 1188–1194.CrossRefGoogle Scholar
  19. 19.
    Segura, T., Anderson, B. C., Chung, P. H., Webber, R. E., Shull, K. R., & Shea, L. D. (2005). Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials, 26, 359–371.CrossRefGoogle Scholar
  20. 20.
    Jia, X., Yeo, Y., Clifton, R. J., Jiao, T., Kohane, D. S., Kobler, J. B., et al. (2006). Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules, 7, 3336–3344.CrossRefGoogle Scholar
  21. 21.
    Picotti, F., Fabbian, M., Gianni, R., Sechi, A., Stucchi, L., Bosco, M. (2012) Hyaluronic acid lipoate: synthesis and physicochemical properties. Carbohydrate polymers (in press).Google Scholar
  22. 22.
    Su, W. Y., Chen, Y. C., & Lin, F. H. (2010). Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration. Acta Biomaterialia, 6, 3044–3055.CrossRefGoogle Scholar
  23. 23.
    Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.CrossRefGoogle Scholar
  24. 24.
    Sun, H., Guo, B., Li, X., Cheng, R., Meng, F., Liu, H., et al. (2010). Shell-sheddable micelles based on dextran-SS-poly (ε-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin. Biomacromolecules, 11, 848–854.CrossRefGoogle Scholar
  25. 25.
    Speth, P., Van Hoesel, Q., & Haanen, C. (1988). Clinical pharmacokinetics of doxorubicin. Clinical Pharmacokinetics, 15, 15.CrossRefGoogle Scholar
  26. 26.
    Bosio, V. E., Machain, V., López, A. G., De Berti, I. O. P., Marchetti, S. G., Mechetti, M., et al. (2012). Binding and encapsulation of doxorubicin on smart pectin hydrogels for oral delivery. Applied Biochemistry and Biotechnology, 167, 1365–1376.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yuan Cui
    • 1
  • Yanhui Li
    • 1
  • Qian Duan
    • 1
  • Toyoji Kakuchi
    • 2
  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunChina
  2. 2.Division of Biotechnology and Macromolecular Chemistry, Graduate school of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations