Skip to main content


Log in

Industrial Waste Utilization for Low-Cost Production of Raw Material Oil Through Microbial Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript


In view of ever-growing demand of biodiesel, there is an urgent need to look for inexpensive and promising renewable raw material oils for its production. In this context, the aim of this study was to evaluate the potential use of industrial wastes for low-cost production of oils through microbial fermentation. Among the strains tested, Yarrowia lipolytica grew best and produced highest lipid when grown on decanter effluent from palm oil mill. When crude glycerol by-product from a biodiesel plant was added into the effluent as a co-substrate, Y. lipolytica produced a higher biomass of 3.21 g/L and a higher amount of lipid of 2.21 g/L which was 68 % of the dry weight. The scale up and process improvement in a 5-L bioreactor increased the biomass and lipid up to 5.53 and 2.81 g/L, respectively. A semi-continuous mode of operation was an effective mode for biomass enhancement while a fed-batch mode was effective for lipid enhancement. These yeast lipids have potential to be used as biodiesel feedstocks because of their similar fatty acid composition to that of plant oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Zhu, L. Y., Zong, M. H., & Wu, H. (2008). Bioresource Technology, 99, 7881–7885.

    Article  CAS  Google Scholar 

  2. Papanikolaou, S., Chevalot, I., Komaitis, M., Marc, I., & Aggelis, G. (2002). Applied Microbiology and Biotechnology, 58, 308–312.

    Article  CAS  Google Scholar 

  3. Cheirsilp, B., Suwannarat, W., & Niyomdecha, R. (2011). New Biotechnology, 28(4), 362–368.

    Article  CAS  Google Scholar 

  4. Dumrattana, P., & Tansakul, P. (2006). Songklanakarin Journal of Science and Technology, 28(1), 99–105.

    Google Scholar 

  5. Mustar, S., Mohd, M. A., Noor., Ahmad, R., & Amin, A.M. (2001) Proceedings from an NSF Workshop, Kuala Lumpur.

  6. Folch, J., Lees, M., & Stanley, G. H. S. (1957). Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  7. Jham, G. N., Teles, F. F. F., & Campos, L. G. (1982). Journal of the American Chemical Society, 59(3), 132–133.

    CAS  Google Scholar 

  8. APHA. (2005). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  9. Kosugi, Y., Takahashi, K., & Lopez, C. (1995). Journal of the American Chemical Society, 72, 1281–1285.

    CAS  Google Scholar 

  10. Ratledge, C., & Wynn, J. P. (2002). Advances in Applied Microbiology, 51, 1–51.

    Article  CAS  Google Scholar 

  11. Darvishi, F., Destain, J., Nahvi, I, Thonart, P., & Zarkesh-Esfahani, H. (2012) Applied Biochemistry and Biotechnology. doi:10.1007/s12010-012-9844-z

  12. Chi, Z., Zheng, Y., Jiang, A., & Chen, S. (2011). Applied Biochemistry and. Biotechnology, 165, 442–453.

    CAS  Google Scholar 

  13. Angerbauer, C., Siebenhofer, M., Mittelbach, M., & Guebitz, G. M. (2008). Bioresource Technology, 99, 3051–3056.

    Article  CAS  Google Scholar 

  14. Oswal, N., Sarma, P. M., Zinjarde, S. S., & Pant, A. (2002). Bioresource Technology, 85, 35–37.

    Article  CAS  Google Scholar 

  15. Chen, X., Li, Z., Zhang, X., Hu, F., Ryu, D. D. Y., et al. (2009). Applied Biochemistry and Biotechnology, 159, 591–604.

    Article  CAS  Google Scholar 

  16. Kavadia, H., Komaitis, M., Chevalot, I., Blanchard, F., Marc, I., et al. (2001). Journal of the American Chemical Society, 78, 341–346.

    CAS  Google Scholar 

  17. Botham, P. A., & Ratledge, C. (1979). Journal of General Microbiology, 114, 361–375.

    Article  CAS  Google Scholar 

  18. Certik, M., Megova, J., & Horenitzky, R. (1999). Journal of General and Applied Microbiology, 45, 289–293.

    Article  CAS  Google Scholar 

  19. Tsigie, Y. A., Wang, C. Y., Kasim, N. S., Diem, Q. D., Huynh, L. H., et al. (2012). Journal of Biomedicine and Biotechnology, 2012, 378–384.

    Article  Google Scholar 

  20. Saenge, C., Cheirsilp, B., Suksaroge, T., & Bourtoom, T. (2011). Biotechnology and Bioprocess Engineering, 16(1), 23–33.

    Article  CAS  Google Scholar 

  21. Easterling, E. R., French, W. T., Hernandez, R., & Licha, M. (2009). Bioresource Technology, 100, 356–361.

    Article  CAS  Google Scholar 

  22. Papanikolaou, S., & Aggelis, G. (2002). Bioresource Technology, 82, 43–49.

    Article  CAS  Google Scholar 

  23. Makri, A., Fakas, S., & Aggelis, G. (2010). Bioresource Technology, 101, 2351–2358.

    Article  CAS  Google Scholar 

  24. Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C., et al. (2009). Progress in Lipid Research, 48, 375–387.

    Article  CAS  Google Scholar 

  25. Papanikolaou, S., Chevalot, I., Komaitis, M., Aggelis, G., & Marc, I. (2001). Antonie van Leeuwenhoek—International Journal of General and Molecular Microbiology, 80, 215–224.

    Article  CAS  Google Scholar 

  26. Rossi, M., Buzzini, P., Cordisco, L., Amaretti, A., Sala, M., et al. (2009). FEMS Microbiology Ecology, 69(3), 363–372.

    Article  CAS  Google Scholar 

  27. Saenge, C., Cheirsilp, B., Suksaroge, T., & Bourtoom, T. (2011). Process Biochemistry, 46, 210–128.

    Article  CAS  Google Scholar 

  28. Chatzifragkou, A., Makri, A., Belka, A., Bellou, S., Mavrou, M., et al. (2011). Energy, 36, 1097–1108.

    Article  CAS  Google Scholar 

  29. Ahmed, S. U., Singh, S. K., Pandey, A., Kanjilal, S., & Prasad, R. B. N. (2008). Biochem Applied Biochemistry and Biotechnology, 151, 599–609.

    Article  CAS  Google Scholar 

Download references


This research was financial supported by the Graduate School of Prince of Songkla University. This work was also supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission. Thanks also to Dr. Brian Hodgson for his assistance with the English.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Benjamas Cheirsilp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louhasakul, Y., Cheirsilp, B. Industrial Waste Utilization for Low-Cost Production of Raw Material Oil Through Microbial Fermentation. Appl Biochem Biotechnol 169, 110–122 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: