Applied Biochemistry and Biotechnology

, Volume 169, Issue 1, pp 170–180 | Cite as

Overexpression of the Formaldehyde Dehydrogenase Gene from Brevibacillus brevis to Enhance Formaldehyde Tolerance and Detoxification of Tobacco

  • Hongjuan NianEmail author
  • Qingchao Meng
  • Wei Zhang
  • Limei Chen


The faldh gene coding for a putative Brevibacillus brevis formaldehyde dehydrogenase (FALDH) was isolated and then transformed into tobacco. A total of three lines of transgenic plants were generated, with each showing 2- to 3-fold higher specific formaldehyde dehydrogenase activities than wild-type tobacco, a result that demonstrates the functional activity of the enzyme in formaldehyde (HCHO) oxidation. Overexpression of faldh in tobacco confers a high tolerance to exogenous HCHO and an increased ability to take up HCHO. A 13C-nuclear magnetic resonance technique revealed that the transgenic plants were able to oxidize more aqueous HCHO to formate than the wild-type (WT) plants. When treated with gaseous HCHO, the transgenic tobacco exhibited an enhanced ability to transform more HCHO into formate, citrate acid, and malate but less glycine than the WT plants. These results indicate that the increased capacity of the transgenic tobacco to take up, tolerate, and metabolize higher concentrations of HCHO was due to the overexpression of B. brevis FALDH, revealing the essential function of this enzyme in HCHO detoxification. Our results provide a potential genetic engineering strategy for improving the phytoremediation of HCHO pollution.


Brevibacillus brevis Formaldehyde dehydrogenase Transgenic tobacco HCHO metabolism HCHO detoxification 



This work was supported by the National Natural Science Foundation of China (31160020) and by the Application of Basic Research Foundation (2009ZC014X) from Yunnan Province.


  1. 1.
    Giese, M., Bauer-Doranth, U., Langebartels, C., & Sandermann, H., Jr. (1994). Plant Physiology, 104, 1301–1309.Google Scholar
  2. 2.
    Achkor, H., Diaz, M., Fernandez, M. R., Biosca, J. A., Pares, X., & Martinez, M. C. (2003). Plant Physiology, 132, 2248–2255.CrossRefGoogle Scholar
  3. 3.
    Chen, L. M., Yurimoto, H., Li, K. Z., Orita, I., Akita, M., Kato, N., Sakai, Y., & Izui, K. (2010). Bioscience, Biotechnology, and Biochemistry, 74, 627–635.CrossRefGoogle Scholar
  4. 4.
    Song, Z., Orita, I., Yin, F., Yurimoto, H., Kato, N., Sakai, Y., Izui, K., Li, K., & Chen, L. (2010). Biotechnology Letters, 32, 1541–1548.CrossRefGoogle Scholar
  5. 5.
    Dolferus, R., Osterman, J. C., Peacock, W. J., & Dennis, E. S. (1997). Genetics, 146, 1131–1141.Google Scholar
  6. 6.
    Martinez, M. C., Achkor, H., Persson, B., Fernandez, M. R., Shafqat, J., Farres, J., Jornvall, H., & Pares, X. (1996). European Journal of Biochemistry, 241, 849–885.CrossRefGoogle Scholar
  7. 7.
    Shafqat, J., El-Ahmad, M., Danielsson, O., Martinez, M. C., Persson, B., Pares, X., & Jornvall, H. (1996). Proceedings of the National Academy of Sciences of the United States of America, 93, 5595–5599.CrossRefGoogle Scholar
  8. 8.
    Schendel, F. J., Bremmon, C. E., Flickinger, M. C., Guettler, M., & Hanson, R. S. (1990). Applied and Environmental Microbiology, 56, 963–970.Google Scholar
  9. 9.
    Arfman, N., Dijkhuizen, L., Kirchhof, G., Ludwig, W., Schleifer, K. H., Bulygina, E. S., Chumakov, K. M., Govorukhina, N. I., Trotsenko, Y. A., White, D., & Sharp, R. J. (1992). International Journal of Systematic Bacteriology, 42, 439–445.CrossRefGoogle Scholar
  10. 10.
    Arfman, N., de Vries, K. J., Moezelaar, H. R., Attwood, M. M., Robinson, G. K., van Geel, M., & Dijkhuizen, L. (1991). Archives of Microbiology, 157, 272–278.CrossRefGoogle Scholar
  11. 11.
    Arfman, N., Watling, E. M., Clement, W., van Ossterwijk, R. J., de Vries, G. E., Harder, W., Attwood, M. M., & Dijkhuizen, L. (1989). Archives of Microbiology, 152, 280–288.CrossRefGoogle Scholar
  12. 12.
    Yurimoto, H., Hirai, R., Yasueda, H., Mitsui, R., Sakai, Y., & Kato, N. (2002). FEMS Microbiology Letters, 214, 189–193.CrossRefGoogle Scholar
  13. 13.
    Pluschkell, S. B., & Flickinger, M. C. (2002). Microbiology, 148, 3223–3233.Google Scholar
  14. 14.
    Murray, M. G., & Thompson, W. G. (1980). Nucleic Acids Research, 8, 321–4325.CrossRefGoogle Scholar
  15. 15.
    Horsch, R. B., & Hoffman, N. L. (1985). Science, 227, 1229–1231.CrossRefGoogle Scholar
  16. 16.
    Wippermann, U., Fliegmann, J., Bauw, G., Langebartels, C., Maier, K., & Sandermann, H., Jr. (1999). Planta, 208, 12–18.CrossRefGoogle Scholar
  17. 17.
    Ito, K., Takahashi, M., Yoshimoto, T., & Tsuru, D. (1994). Journal of Bacteriology, 176, 2483–2491.Google Scholar
  18. 18.
    Hanson, A. D., & Roje, S. (2001). Annual Review of Plant Physiology and Plant Molecular Biology, 52, 119–137.CrossRefGoogle Scholar
  19. 19.
    Cossins, E. A. (1964). Canadian Journal of Biochemistry, 42, 1793–1802.CrossRefGoogle Scholar
  20. 20.
    Ramaswamy, N. K., Sangeeta, G. J., Behere, A. G., & Nair, P. M. (1983). Plant Science Letters, 32, 213–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Hongjuan Nian
    • 1
    Email author
  • Qingchao Meng
    • 1
  • Wei Zhang
    • 1
  • Limei Chen
    • 1
  1. 1.Biotechnology Research CenterKunming University of Science and TechnologyKunmingChina

Personalised recommendations