Applied Biochemistry and Biotechnology

, Volume 169, Issue 1, pp 77–87 | Cite as

Enzymatic Characterization of Human Immunodeficiency Virus Type 1 Reverse Transcriptase for Use in cDNA Synthesis

  • Atsushi Konishi
  • Mayu Shinomura
  • Kiyoshi Yasukawa
Article

Abstract

The aim of this study is to explore the advantages of using human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) in cDNA synthesis. Recombinant HIV-1 group M (HIV-1 M) RT and HIV-1 group O (HIV-1 O) RT were produced in an Escherichia coli expression system. In the incorporation of dTTP into poly(rA)-p(dT)15 (T/P), the Km values for dTTP of HIV-1 M RT and HIV-1 O RT were 8 and 12 % of that of Moloney murine leukemia virus (MMLV) RT, respectively, and the Km values for T/P were 25 and 23 % of that of MMLV RT, respectively. Compared with MMLV RT, HIV-1 M RT and HIV-1 O RT were less susceptible to formamide, which is frequently used for cDNA synthesis with a G + C-rich RNA to improve specificity. The high substrate affinity and low susceptibility to formamide of HIV-1 RT might be advantageous for its use in cDNA synthesis.

Keywords

cDNA Formamide HIV-1 MMLV Reverse transcriptase 
DMSO

Dimethyl sulfoxide

HIV-1

Human immunodeficiency virus type 1

HIV-1 M

HIV-1 group M

HIV-1 O

HIV-1 group O

MMLV

Moloney murine leukemia virus

PMSF

Phenylmethylsulfonyl fluoride

RT

Reverse transcriptase

T/P

Template–primer

Supplementary material

12010_2012_9953_MOESM1_ESM.pdf (44 kb)
Fig. S1(PDF 43 kb)
12010_2012_9953_MOESM2_ESM.doc (58 kb)
ESM Tables(DOC 58 kb)

References

  1. 1.
    Kimmel, A. R., & Berger, S. L. (1987). Methods in Enzymology, 152, 307–316.CrossRefGoogle Scholar
  2. 2.
    Georgiadis, M. M., Jessen, S. M., Ogata, C. M., Telesnitsky, A., Goff, S. P., & Hendrickson, W. A. (1995). Structure, 3, 879–892.CrossRefGoogle Scholar
  3. 3.
    Lim, D., Gregorio, G. G., Bingman, C., Martinez-Hackert, E., Hendrickson, W. A., & Goff, S. P. (2006). Journal of Virology, 80, 8379–8389.CrossRefGoogle Scholar
  4. 4.
    di Marzo Veronese, F., Copeland, T. D., DeVico, A. L., Rahman, R., Oroszlan, S., Gallo, R. C., et al. (1986). Science, 231, 1289–1291.CrossRefGoogle Scholar
  5. 5.
    Patel, P. H., Jacobo-Molina, A., Ding, J., Tantillo, C., Clark, A. D., Jr., Raag, R., et al. (1995). Biochemistry, 34, 5351–5363.CrossRefGoogle Scholar
  6. 6.
    Ding, J., Das, K., Hsiou, Y., Sarafianos, S. G., Clark, A. D., Jr., Jacobo-Molina, A., et al. (1998). Journal of Molecular Biology, 284, 1095–1111.CrossRefGoogle Scholar
  7. 7.
    Venezia, C. F., Meany, B. J., Braz, V. A., & Barkley, M. D. (2006). Biochemistry, 48, 9084–9093.CrossRefGoogle Scholar
  8. 8.
    Buonaguro, L., Tornesello, M. L., & Buonaguro, F. M. (2007). Journal of Virology, 81, 10209–10219.CrossRefGoogle Scholar
  9. 9.
    Barrioluengo, V., Álvarez, M., Barbieri, D., & Menéndez-Arias, L. (2011). Biochemical Journal, 436, 599–607.CrossRefGoogle Scholar
  10. 10.
    Álvarez, M., Matamoros, T., & Menéndez-Arias, L. (2009). Journal of Molecular Biology, 392, 872–884.CrossRefGoogle Scholar
  11. 11.
    Kievits, T., van Gemen, B., van Strijp, D., Schukkink, R., Dircks, M., Adriaanse, H., et al. (1991). Journal of Virological Methods, 35, 273–286.CrossRefGoogle Scholar
  12. 12.
    Ishiguro, T., Saitoh, J., Horie, R., Hayashi, T., Ishizuka, T., Tsuchiya, S., et al. (2003). Analytical Biochemistry, 314, 77–86.CrossRefGoogle Scholar
  13. 13.
    Masuda, T., Yasukawa, K., Isawa, Y., Horie, R., Saitoh, J., Ishiguro, T., et al. (2004). Journal of Bioscience and Bioengineering, 98, 236–243.Google Scholar
  14. 14.
    Yasukawa, K., Agata, N., & Inouye, K. (2010). Enzyme and Microbial Technology, 46, 391–396.CrossRefGoogle Scholar
  15. 15.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  16. 16.
    Yasukawa, K., Nemoto, D., & Inouye, K. (2008). Journal of Biochemistry, 143, 261–268.CrossRefGoogle Scholar
  17. 17.
    Chester, N., & Marshak, D. R. (1993). Analytical Biochemistry, 209, 284–290.CrossRefGoogle Scholar
  18. 18.
    Sarkar, G., Kapelner, S., & Sommer, S. S. (1990). Nucleic Acids Research, 18, 7465.CrossRefGoogle Scholar
  19. 19.
    Yasukawa, K., Konishi, A., & Inouye, K. (2010). Bioscience, Biotechnology, and Biochemistry, 74, 1925–1930.CrossRefGoogle Scholar
  20. 20.
    Operario, D. J., Reynolds, H. M., & Kim, B. (2005). Virology, 335, 106–121.CrossRefGoogle Scholar
  21. 21.
    Bowrin, V., Rouse-Miller, J., Sutton, F., & Sirju-Charran, G. (2012). Phytochemical Analysis. doi:10.1002/pca.2390.
  22. 22.
    Swinson, K., & Koban, M. (2005). Journal of Biochemical and Biophysical Methods, 63, 149–153.CrossRefGoogle Scholar
  23. 23.
    Yasukawa, K., Mizuno, M., Konishi, A., & Inouye, K. (2010). Journal of Biotechnology, 150, 299–306.CrossRefGoogle Scholar
  24. 24.
    Konishi, A., Nemoto, D., Yasukawa, K., & Inouye, K. (2011). Bioscience, Biotechnology, and Biochemistry, 75, 1618–1620.CrossRefGoogle Scholar
  25. 25.
    Konishi, A., Yasukawa, K., & Inouye, K. (2012). Biotechnology Letters, 34, 1209–1215.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Atsushi Konishi
    • 1
  • Mayu Shinomura
    • 1
  • Kiyoshi Yasukawa
    • 1
  1. 1.Division of Food Science and BiotechnologyGraduate School of Agriculture, Kyoto UniversityKyotoJapan

Personalised recommendations