Applied Biochemistry and Biotechnology

, Volume 169, Issue 1, pp 100–109 | Cite as

Extracellular Enzymes of the White-Rot Fungus Fomes fomentarius and Purification of 1,4-β-Glucosidase

  • Tomáš Větrovský
  • Petr Baldrian
  • Jiří Gabriel
Article

Abstract

Production of the lignocellulose-degrading enzymes endo-1,4-β-glucanase, 1,4-β-glucosidase, cellobiohydrolase, endo-1,4-β-xylanase, 1,4-β-xylosidase, Mn peroxidase, and laccase was characterized in a common wood-rotting fungus Fomes fomentarius, a species able to efficiently decompose dead wood, and compared to the production in eight other fungal species. The main aim of this study was to characterize the 1,4-β-glucosidase produced by F. fomentarius that was produced in high quantities in liquid stationary culture (25.9 U ml−1), at least threefold compared to other saprotrophic basidiomycetes, such as Rhodocollybia butyracea, Hypholoma fasciculare, Irpex lacteus, Fomitopsis pinicola, Pleurotus ostreatus, Piptoporus betulinus, and Gymnopus sp. (between 0.7 and 7.9 U ml−1). The 1,4-β-glucosidase enzyme was purified to electrophoretic homogeneity by both anion-exchange and size-exclusion chromatography. A single 1,4-β-glucosidase was found to have an apparent molecular mass of 58 kDa and a pI of 6.7. The enzyme exhibited high thermotolerance with an optimum temperature of 60 °C. Maximal activity was found in the pH range of 4.5–5.0, and KM and Vmax values were 62 μM and 15.8 μmol min−1 l−1, respectively, when p-nitrophenylglucoside was used as a substrate. The enzyme was competitively inhibited by glucose with a Ki of 3.37 mM. The enzyme also acted on p-nitrophenylxyloside, p-nitrophenylcellobioside, p-nitrophenylgalactoside, and p-nitrophenylmannoside with optimal pH values of 6.0, 3.5, 5.0, and 4.0–6.0, respectively. The combination of relatively low molecular mass and low KM value make the 1,4-β-glucosidase a promising enzyme for biotechnological applications.

Keywords

Cellulose 1,4-β-glucosidase Glycosyl hydrolase Saprotrophic basidiomycetes Wood-rotting fungi Fomes fomentarius 

References

  1. 1.
    Abe, M., Takaoka, N., Idemoto, Y., Takagi, C., Imai, T., & Nakasaki, K. (2008). International Journal of Food Microbiology, 124, 199–203.CrossRefGoogle Scholar
  2. 2.
    Bak, J. S., Ko, J. K., Choi, I. G., Park, Y. C., Seo, J. H., & Kim, K. H. (2009). Biotechnology and Bioengineering, 104, 471–482.CrossRefGoogle Scholar
  3. 3.
    Baldrian, P., & Gabriel, J. (1997). Folia Microbiologica, 42, 521–523.CrossRefGoogle Scholar
  4. 4.
    Baldrian, P., & Valášková, V. (2008). FEMS Microbiology Reviews, 32, 501–521.CrossRefGoogle Scholar
  5. 5.
    Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383.CrossRefGoogle Scholar
  6. 6.
    Bhattacharjee, B., Roy, A., & Majumder, A. L. (1992). Biochemistry International, 28, 783–793.Google Scholar
  7. 7.
    Bourbonnais, R., & Paice, M. G. (1990). FEBS Letters, 267, 99–102.CrossRefGoogle Scholar
  8. 8.
    Cavaco-Paulo, A. (1998). Carbohydrate Polymers, 37, 273–277.CrossRefGoogle Scholar
  9. 9.
    Copa-Patino, J. L., & Broda, P. (1994). Carbohydrate Research, 253, 265–275.CrossRefGoogle Scholar
  10. 10.
    Duan, C. J., & Feng, J. X. (2010). Biotechnology Letters, 32, 1765–1775.CrossRefGoogle Scholar
  11. 11.
    Herr, D., Baumer, F., & Dellweg, H. (1978). European Journal of Applied Microbiology and Biotechnology, 5, 29–36.CrossRefGoogle Scholar
  12. 12.
    Chen, W., Zhao, Z., Chen, S. F., & Li, Y. Q. (2008). Bioresource Technology, 99, 3187–3194.CrossRefGoogle Scholar
  13. 13.
    Chen, W., Zhao, Z., & Li, Y. Q. (2011). Carbohydrate Polymers, 85, 369–375.CrossRefGoogle Scholar
  14. 14.
    Jaszek, M., Zuchowski, J., Dajczak, E., Cimek, K., Graz, M., & Grzywnowicz, K. (2006). International Biodeterioration & Biodegradation, 58, 168–175.CrossRefGoogle Scholar
  15. 15.
    Kapich, A. N., Prior, B. A., Lundell, T., & Hatakka, A. (2005). Journal of Microbiological Methods, 61, 261–271.CrossRefGoogle Scholar
  16. 16.
    Kral, J., Voltr, J., Proska, J., Gabriel, J., Baldrian, P., Cerny, J., et al. (2005). X-Ray Spectrometry, 34, 341–344.CrossRefGoogle Scholar
  17. 17.
    Lee, J. S. (2005). Nutrition Research, 25, 187–195.CrossRefGoogle Scholar
  18. 18.
    Lee, J. S., Lim, M. O., Cho, K. Y., Cho, J. H., Chang, S. Y., & Nam, D. H. (2006). Journal of Microbiology, 44, 29–34.Google Scholar
  19. 19.
    Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506.CrossRefGoogle Scholar
  20. 20.
    Maurya, N. S., Mittal, A. K., Cornel, P., & Rother, E. (2006). Bioresource Technology, 97, 512–521.CrossRefGoogle Scholar
  21. 21.
    Morais, H., Ramos, C., Matos, N., Forgacs, E., Cserhati, T., Almeida, V., et al. (2002). Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 770, 111–119.CrossRefGoogle Scholar
  22. 22.
    Neifar, M., Jaouani, A., Ellouze-Ghorbel, R., & Ellouze-Chaabouni, S. (2010). Journal of Molecular Catalysis B: Enzymatic, 64, 68–74.CrossRefGoogle Scholar
  23. 23.
    Ngo, T. T., & Lenhoff, H. M. (1980). Analytical Biochemistry, 105, 389–397.CrossRefGoogle Scholar
  24. 24.
    Okamoto, K., Sugita, Y., Nishikori, N., Nitta, Y., & Yanase, H. (2011). Enzyme and Microbial Technology, 48, 359–364.CrossRefGoogle Scholar
  25. 25.
    Park, Y. M., Kim, I. T., Park, H. J., Choi, J. W., Park, K. Y., Lee, J. D., et al. (2004). Biological & Pharmaceutical Bulletin, 27, 1588–1593.CrossRefGoogle Scholar
  26. 26.
    Peintner, U., Poder, R., & Pumpel, T. (1998). Mycological Research, 102, 1153–1162.CrossRefGoogle Scholar
  27. 27.
    Rasmussen, M. L., Shrestha, P., Khanal, S. K., Pometto, A. L. R., & van Leeuwen, J. H. (2010). Bioresource Technology, 101, 3526–3533.CrossRefGoogle Scholar
  28. 28.
    Rodrigues, M. A. M., Pinto, P., Bezerra, R. M. F., Dias, A. A., Guedes, C. V. M., Cardoso, V. M. G., et al. (2008). Animal Feed Science and Technology, 141, 326–338.CrossRefGoogle Scholar
  29. 29.
    Roussel, B., Rapior, S., Charlot, C., Masson, C. L., & Bouti, P. (2002). Revue d'Histoire de la Pharmacie, 50, 599–614.CrossRefGoogle Scholar
  30. 30.
    Schmidt, O. (2006) Wood and tree fungi: Biology, damage, protection, and use. Berlin: SpringerGoogle Scholar
  31. 31.
    Schwarze, F. (1994). Mycologist, 8, 32–34.CrossRefGoogle Scholar
  32. 32.
    Smith, M. H., & Gold, M. H. (1979). Applied and Environmental Microbiology, 37, 938–942.Google Scholar
  33. 33.
    Tomšovský, M., Popelářová, P., & Baldrian, P. (2009). Folia Microbiologica, 54, 74–80.CrossRefGoogle Scholar
  34. 34.
    Valášková, V., & Baldrian, P. (2006). Microbiology (UK), 152, 613–3622.Google Scholar
  35. 35.
    Valášková, V., Šnajdr, J., Bittner, B., Cajthaml, T., Merhautová, V., Hoffichter, M., et al. (2007). Soil Biology and Biochemistry, 39, 2651–2660.CrossRefGoogle Scholar
  36. 36.
    Větrovský, T., Voříšková, J., Šnajdr, J., Gabriel, J., & Baldrian, P. (2011). Biodegradation, 22, 709–718.CrossRefGoogle Scholar
  37. 37.
    Voříšková, J., Dobiášová, P., Šnajdr, J., Vaněk, D., Cajthaml, T., Šantrůčková, H., et al. (2011). Fungal Ecology, 4, 417–426.CrossRefGoogle Scholar
  38. 38.
    Žižka, Z., & Gabriel, J. (2006). Folia Microbiologica, 51, 109–113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Tomáš Větrovský
    • 1
  • Petr Baldrian
    • 1
  • Jiří Gabriel
    • 1
  1. 1.Laboratory of Environmental MicrobiologyInstitute of Microbiology of the ASCRPraha 4Czech Republic

Personalised recommendations