Skip to main content

Advertisement

Log in

Dark Fermentative Hydrogen Production from Neutralized Acid Hydrolysates of Conifer Pulp

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Concentrated acid hydrolysis of cellulosic material results in high dissolution yields. In this study, the neutralization step of concentrated acid hydrolysate of conifer pulp was optimized. Dry conifer pulp hydrolysis with 55 % H2SO4 at 45 °C for 2 h resulted in total sugar yields of 22.3–26.2 g/L. The neutralization step was optimized for solid Ca(OH)2, liquid Ca(OH)2 or solid CaO, mixing time, and water supplementation. The highest hydrogen yield of 1.75 mol H2/mol glucose was obtained with liquid Ca(OH)2, while the use of solid Ca(OH)2 or CaO inhibited hydrogen fermentation. Liquid Ca(OH)2 removed sulfate to below 30 mg SO4 2−/L. Further optimization of the neutralization conditions resulted in the yield of 2.26 mol H2/mol glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hallenbeck, P. C. (2009). International Journal of Hydrogen Energy, 34, 7379–7389.

    Article  CAS  Google Scholar 

  2. Wang, J., & Wang, W. (2009). International Journal of Hydrogen Energy, 34, 799–811.

    Article  CAS  Google Scholar 

  3. Hallenbeck, P. C., Abo-Hashesh, M., & Ghosh, D. (2012). Bioresource Technology, 110, 1–9.

    Article  CAS  Google Scholar 

  4. Logan, B. E. (2004). Environmental Science and Technology, 38, 160A–167A.

    Article  CAS  Google Scholar 

  5. Hendriks, A., & Zeeman, G. (2009). Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  6. Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biotechnology Advances, 29, 675–685.

    Article  CAS  Google Scholar 

  7. Kim, S., & Holtzapple, M. T. (2005). Bioresource Technology, 96, 1994–2006.

    Article  CAS  Google Scholar 

  8. Lee, M. J., Song, J. H., & Hwang, S. J. (2009). Bioresource Technology, 100, 1491–1493.

    Article  CAS  Google Scholar 

  9. Kim, D. H., Kim, S. H., Kim, K. Y., & Shin, H. S. (2010). International Journal of Hydrogen Energy, 35, 1590–1594.

    Article  CAS  Google Scholar 

  10. Chu, C. Y., Wu, S. Y., Tsai, C. Y., & Lin, C. Y. (2011). International Journal of Hydrogen Energy, 36, 8743–8750.

    Article  CAS  Google Scholar 

  11. Lo, Y. C., Su, Y. C., Cheng, C. L., & Chang, J. S. (2011). International Journal of Hydrogen Energy, 36, 13955–13963.

    Article  CAS  Google Scholar 

  12. Pattra, S., Sangyoka, S., Boonmee, M., & Reungsang, A. (2008). International Journal of Hydrogen Energy, 33, 5256–5265.

    Article  CAS  Google Scholar 

  13. Chang, A. C. C., Tu, Y. H., Huang, M. H., Lay, C. H., & Lin, C. Y. (2011). International Journal of Hydrogen Energy, 36, 1480–1488.

    Google Scholar 

  14. Li, Y. C., Wu, S. Y., Chu, C. Y., & Huang, H. C. (2011). International Journal of Hydrogen Energy, 36, 14245–14251.

    Article  CAS  Google Scholar 

  15. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 17–24.

    Article  CAS  Google Scholar 

  16. Ren, N., Wang, A., Cao, G., Xu, J., & Gao, L. (2009). Biotechnology Advances, 27, 1051–1060.

    Article  CAS  Google Scholar 

  17. Dwivedi, P., Alavalapati, J. R. R., & Lal, P. (2009). Energy for Sustainable Development, 13, 174–182.

    Article  CAS  Google Scholar 

  18. Sainio, T., Turku, I., & Heinonen, J. (2011). Bioresource Technology, 102, 6048–6057.

    Article  CAS  Google Scholar 

  19. Hamelinck, C. N., Hooijdonk, G., & Faaij, A. P. C. (2005). Biomass and Bioenergy, 28, 384–410.

    Article  CAS  Google Scholar 

  20. Lin, C., & Chen, H. (2006). International Journal of Hydrogen Energy, 31, 953–960.

    Article  CAS  Google Scholar 

  21. Lee, W. G., Lee, J. S., Shin, C. S., Park, S. C., Chang, H. N., & Chang, Y. K. (1999). Applied Biochemistry and Biotechnology, 78, 547–559.

    Article  Google Scholar 

  22. Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Process Biochemistry, 39, 1533–1542.

    Article  CAS  Google Scholar 

  23. Cao, G. L., Ren, N. Q., Wang, A. J., Guo, W. Q., Xu, J. F., & Liu, B. F. (2010). International Journal of Hydrogen Energy, 35, 13475–13480.

    Article  CAS  Google Scholar 

  24. Quéméneur, M., Hamelin, J., Barakat, A., Steyer, J., Carrére, H., & Trably, E. (2012). International Journal of Hydrogen Energy, 37, 3750–3759.

    Google Scholar 

  25. Dubois, M., Gilles, K. A., Hamilton, J. K., Regers, P., & Smith, F. (1956). Analytic Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  26. APHA. (1998). Standard methods for the examination of water and waste water (20th ed.). Washington: American Public Health Association.

    Google Scholar 

  27. United States Environmental Protection Agency (1992) Method 3020A: test methods for evaluating solid waste, physical/chemical methods, 3rd ed. United States Environmental Protection Agency.

  28. Levenspiel, O. (1999). Chemical reaction engineering (3rd ed., pp. 170–171). USA: Wiley.

    Google Scholar 

  29. Mizuno, O., Li, Y. Y., & Noike, T. (1997). Water Research, 32, 1626–1634.

    Article  Google Scholar 

  30. Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and applications (pp. 600–601). New York: McGraw-Hill.

    Google Scholar 

  31. Chang, F. Y., & Lin, C. Y. (2006). Water Science Technology, 54, 105–112.

    Article  CAS  Google Scholar 

  32. Wang, X. J., Ren, N. Q., Shen, X. W., & Qian, G. W. (2007). International Journal of Hydrogen Energy, 32, 748–754.

    Article  Google Scholar 

  33. Cao, G., Ren, N., Wang, A., Lee, D. J., Guo, W., Liu, B., et al. (2009). International Journal of Hydrogen Energy, 34, 7182–7188.

    Article  CAS  Google Scholar 

  34. Liu, H., Zhang, T., & Fang, H. H. P. (2003). Biotechnology Letters, 25, 365–369.

    Article  CAS  Google Scholar 

  35. Nissilä, M. E., Tähti, H. P., Rintala, J. A., & Puhakka, J. A. (2011). Bioresource Technology, 102, 4501–4506.

    Article  Google Scholar 

  36. Ren, N. Q., Xu, J. F., Gao, L. F., Xin, L., Qiu, J., & Su, D. X. (2010). International Journal of Hydrogen Energy, 35, 2742–2746.

    Article  CAS  Google Scholar 

  37. Ueno, Y., Kawai, T., Sato, S., Otsuka, S., & Morimoto, M. (1995). Journal of Fermentation and Bioengineering, 79, 395–397.

    Article  CAS  Google Scholar 

  38. Nissilä, M.E., Li, Y.C., Wu, S.Y., Lin, C.Y., Puhakka, J.A. (2012) Applied Energy 2012; http://dx.doi.org/10.1016/j.apenergy.2012.06.015.

  39. Sagnak, R., Kargi, F., & Kapdan, I. K. (2011). International Journal of Hydrogen Energy, 36, 12803–12809.

    Article  CAS  Google Scholar 

  40. Ozmihci, S., Kargi, F., & Cakir, A. (2011). International Journal of Hydrogen Energy, 36, 2111–2117.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by Tampere University of Technology Graduate School (M.E.N), National Science Council of Taiwan (grant no. NSC 99-2632-E-035-001-MY3; NSC 101-2218-E-035-002-MY2), Taiwan’s Bureau of Energy (grant no. 101-D0204-3), and Feng Chia University (grant no. FCU-11 G27150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marika E. Nissilä.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nissilä, M.E., Li, YC., Wu, SY. et al. Dark Fermentative Hydrogen Production from Neutralized Acid Hydrolysates of Conifer Pulp. Appl Biochem Biotechnol 168, 2160–2169 (2012). https://doi.org/10.1007/s12010-012-9925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9925-z

Keywords

Navigation