Comparative Evaluation of Pumice Stone as an Alternative Immobilization Material for 1,3-Propanediol Production from Waste Glycerol by Immobilized Klebsiella pneumoniae

Abstract

In this study, pumice stone (PS), which is a vastly available material in Turkey, was evaluated as an alternative immobilization material in comparison to other commercially available immobilization materials such as glass beads and polyurethane foam. All immobilized bioreactors resulted in much better 1,3-propanediol production from waste glycerol in comparison to the suspended cell culture bioreactor. It was also demonstrated that the locally available PS material is as good as the commercially available immobilization material. The maximum volumetric productivity (8.5 g L−1 h−1) was obtained by the PS material, which is 220 % higher than the suspended cell system. Furthermore, the immobilized bioreactor system was much more robust against cell washout even at very low hydraulic retention time values.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Mu, Y., Teng, H., Zhang, D. J., Wang, W., & Xiu, Z. L. (2006). Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnology Letters, 28(21), 1755–1759.

    Article  CAS  Google Scholar 

  2. 2.

    Taconi, K. A., Venkataramanan, K. P., & Johnson, D. T. (2009). Growth and solvent production by Clostridium pasteurianum ATCC (R) 6013 (TM) utilizing biodiesel-derived crude glycerol as the sole carbon source. Environmental Progress Sustainable, 28(1), 100–110.

    Article  CAS  Google Scholar 

  3. 3.

    Jun, S. A., Moon, C., Kang, C. H., Kong, S. W., Sang, B. I., & Um, Y. (2010). Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 161(1–8), 491–501.

    Article  CAS  Google Scholar 

  4. 4.

    Mu, Y., Xiu, Z. L., & Zhang, D. J. (2008). A combined bioprocess of biodiesel production by lipase with microbial production of 1,3-propanediol by Klebsiella pneumoniae. Biochemical Engineering Journal, 40(3), 537–541.

    Article  CAS  Google Scholar 

  5. 5.

    Xu, Y. Z., Liu, H. J., Du, W., Sun, Y., Ou, X. J., & Liu, D. H. (2009). Integrated production for biodiesel and 1,3-propanediol with lipase-catalyzed transesterification and fermentation. Biotechnology Letters, 31(9), 1335–1341.

    Article  CAS  Google Scholar 

  6. 6.

    Amaral, P. F. F., Ferreira, T. F., Fontes, G. C., & Coelho, M. A. Z. (2009). Glycerol valorization: new biotechnological routes. Food Bioproducts Process, 87(C3), 179–186.

    Article  CAS  Google Scholar 

  7. 7.

    Zeng, A. P., & Biebl, H. (2002). Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Advances in Biochemical Engineering/Biotechnology, 74, 239–259.

    Article  CAS  Google Scholar 

  8. 8.

    Johannes, T., Simurdiak, M. R., & Zhao, H. (2006). Biocatalysis. In S. Lee (Ed.), Encyclopedia of chemical processing. New York: Taylor & Francis.

  9. 9.

    Cho, M. H., Joen, S. I., Pyo, S. H., Mun, S., & Kim, J. H. (2006). A novel separation and purification process for 1,3-propanediol. Process Biochemistry, 41(3), 739–744.

    Article  CAS  Google Scholar 

  10. 10.

    Hao, J., Xu, F., Liu, H. J., & Liu, D. H. (2006). Downstream processing of 1,3-propanediol fermentation broth. Journal of Chemical Technology and Biotechnology, 81(1), 102–108.

    Article  CAS  Google Scholar 

  11. 11.

    Patwardhan, P. R., & Srivastava, A. K. (2004). Model-based fed-batch cultivation of R. eutropha for enhanced biopolymer production. Biochemical Engineering Journal, 20(1), 21–28.

    Article  CAS  Google Scholar 

  12. 12.

    Wang, Y. H., Teng, H., & Xiu, Z. L. (2011). Effect of aeration strategy on the metabolic flux of Klebsiella pneumoniae producing 1,3-propanediol in continuous cultures at different glycerol concentrations. Journal of Industrial Microbiology and Biotechnology, 38(6), 705–715.

    Article  CAS  Google Scholar 

  13. 13.

    Bizukojc, M., Dietz, D., Sun, J., & Zeng, A. P. (2010). Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions. Bioprocess and Biosystems Engineering, 33(4), 507–523.

    Article  CAS  Google Scholar 

  14. 14.

    Zheng, Z. M., Cheng, K. K., Hu, Q. L., Liu, H. J., Guo, N. N., & Liu, D. H. (2008). Effect of culture conditions on 3-hydroxypropionaldehyde detoxification in 1,3-propanediol fermentation by Klebsiella pneumoniae. Biochemical Engineering Journal, 39(2), 305–310.

    Article  CAS  Google Scholar 

  15. 15.

    Zhu, J. G., Li, S., Ji, X. J., Huang, H., & Hu, N. (2009). Enhanced 1,3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme. World Journal of Microbiology and Biotechnology, 25(7), 1217–1223.

    Article  CAS  Google Scholar 

  16. 16.

    Saxena, R. K., Anand, P., Saran, S., & Isar, J. (2009). Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnology Advances, 27(6), 895–913.

    Article  CAS  Google Scholar 

  17. 17.

    Gungormusler, M., Gonen, C., & Azbar, N. (2011). Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Bioprocess and Biosystems Engineering, 34(6), 727–733.

    Article  CAS  Google Scholar 

  18. 18.

    Gungormusler, M., Gonen, C., Ozdemir, G., & Azbar, N. (2010). Fermentation medium optimization for 1,3-propanediol production using Taguchi and Box–Behnken experimental designs. Fresenius Environmental Bulletin, 19(12), 2840–2847.

    CAS  Google Scholar 

  19. 19.

    Xiu, Z. L., Song, B. H., Wang, Z. T., Sun, L. H., Feng, E. M., & Zeng, A. P. (2004). Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures. Biochemical Engineering Journal, 19(3), 189–197.

    Article  CAS  Google Scholar 

  20. 20.

    Villegas, C. G., Santos, V. E., Zazo, M., Garcia, J. L., & Garcia-Ochoa, F. (2007). Fermentation of glycerol to 1,3-propanediol by Klebsiella oxytoca NRTL B-199: study of product inhibition. Journal of Biotechnology, 131(2), S102–S102.

    Google Scholar 

  21. 21.

    Biebl, H., Zeng, A. P., Menzel, K., & Deckwer, W. D. (1998). Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Applied Microbiology and Biotechnology, 50(1), 24-29.

    Google Scholar 

  22. 22.

    Zhang, G. L., Ma, B. B., Xu, X. L., Li, C., & Wang, L. W. (2007). Fast conversion of glycerol to 1,3-propanediol by a new strain of Klebsiella pneumoniae. Biochemical Engineering Journal, 37(3), 256–260.

    Article  CAS  Google Scholar 

  23. 23.

    Cheng, K. K., Liu, D. H., Sun, Y., & Liu, W. B. (2004). 1,3-Propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechnology Letters, 26(11), 911–915.

    Article  CAS  Google Scholar 

  24. 24.

    Cheng, K. K., Liu, H. J., & Liu, D. H. (2005). Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnology Letters, 27(1), 19–22.

    Article  CAS  Google Scholar 

  25. 25.

    Zeng, A. P., Ross, A., Biebl, H., Tag, C., Gunzel, B., & Deckwer, W. D. (1994). Multiple product inhibition and growth modeling of Clostridium–Butyricum and Klebsiella–Pneumoniae in glycerol fermentation. Biotechnology and Bioengineering, 44(8), 902–911.

    Article  CAS  Google Scholar 

  26. 26.

    Menzel, K., Ahrens, K., Zeng, A. P., & Deckwer, W. D. (1998). Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnology and Bioengineering, 60(5), 617–626.

    Article  CAS  Google Scholar 

  27. 27.

    Zheng, Z. M., Hu, Q. I., Hao, J., Xu, F., Guo, N. N., Sun, Y., et al. (2008). Statistical optimization of culture conditions for 1,3-propanediol by Klebsiella pneumoniae AC 15 via central composite design. Bioresource Technology, 99(5), 1052–1056.

    Article  CAS  Google Scholar 

  28. 28.

    Riondet, C., Cachon, R., Wache, Y., Alcaraz, G., & Divies, C. (1999). Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential. European Journal of Biochemistry, 262(2), 595–599.

    Article  CAS  Google Scholar 

  29. 29.

    Riondet, C., Cachon, R., Wache, Y., Alcaraz, G., & Divies, C. (2000). Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. Journal of Bacteriology, 182(3), 620–626.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank TUBITAK-CAYDAG under grant no. 109Y150 for the financial support of this study. The data presented in this article were produced within the projects above; however, only the authors of this article are responsible for the results and discussions made herein.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nuri Azbar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gonen, C., Gungormusler, M. & Azbar, N. Comparative Evaluation of Pumice Stone as an Alternative Immobilization Material for 1,3-Propanediol Production from Waste Glycerol by Immobilized Klebsiella pneumoniae . Appl Biochem Biotechnol 168, 2136–2147 (2012). https://doi.org/10.1007/s12010-012-9923-1

Download citation

Keywords

  • 1,3-Propanediol
  • Immobilization
  • Klebsiella pneumoniae
  • Glycerol
  • Biopolymer
  • Biodiesel