Skip to main content
Log in

Strain Screening, Fermentation, Separation, and Encapsulation for Production of Nattokinase Functional Food

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study presents a novel and integrated preparation technology for nattokinase functional food, including strain screening, fermentation, separation, and encapsulation. To rapidly screen a nattokinase-productive strain, PCR-based screening method was combined with fibrinolytic activity-based method, and a high productive strain, Bacillus subtilis LSSE-22, was isolated from Chinese soybean paste. Reduction of poly-γ-glutamic acid (γ-PGA) concentration may contribute to separation of nattokinase and reduction of late-onset anaphylaxis risk. Chickpeas were confirmed as the favorable substrate for enhancement of nattokinase production and reduction of γ-PGA yield. Using cracked chickpeas, the nattokinase activity reached 356.25 ± 17.18 FU/g (dry weight), which is much higher than previous reports. To further reduce γ-PGA concentration, ethanol fractional extraction and precipitation were applied for separation of nattokinase. By extraction with 50 % and precipitation with 75 % ethanol solution, 4,000.58 ± 192.98 FU/g of nattokinase powders were obtained, and the activity recovery reached 89 ± 1 %, while γ-PGA recovery was reduced to 21 ± 2 %. To improve the nattokinase stability at acidic pH condition, the nattokinase powders were encapsulated, and then coated with methacrylic acid–ethyl acrylate copolymer. After encapsulation, the nattokinase was protected from being denatured under various acid conditions, and pH-responsible controlled release at simulated intestinal fluid was realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Furie, B., & Furie, B. C. (2008). N Engl J Med, 359, 938–949.

    Article  CAS  Google Scholar 

  2. Sumi, H., Hamada, H., Nakanishi, K., & Hiratani, H. (1990). Acta Haematologica, 84, 139–143.

    Article  CAS  Google Scholar 

  3. Fujita, M., Hong, K., Ito, Y., Misawa, S., Takeuchi, N., Kariya, K., et al. (1995). Biol Pharm Bull, 18, 1194–1196.

    Article  CAS  Google Scholar 

  4. Yatagai, C., Maruyama, M., Kawahara, T., & Sumi, H. (2008). Pathophysiol Haemost Thromb, 36, 227–232.

    Article  Google Scholar 

  5. Peng, Y., Yang, X., & Zhang, Y. (2005). Appl Microbiol Biotechnol, 69, 126–132.

    Article  CAS  Google Scholar 

  6. Ku, T. W., Tsai, R. L., & Pan, T. M. (2009). J Agric Food Chem, 57, 292–296.

    Article  CAS  Google Scholar 

  7. Choi, N. S., Chang, K. T., Jae Maeng, P., & Kim, S. H. (2004). FEMS Microbiol Lett, 236, 325–331.

    Article  CAS  Google Scholar 

  8. Peng, Y., Yang, X. J., Xiao, L., & Zhang, Y. Z. (2004). Res Microbiol, 155, 167–173.

    Article  CAS  Google Scholar 

  9. Agrebi, R., Haddar, A., Hmidet, N., Jellouli, K., Manni, L., & Nasri, M. (2009). Process Biochem, 44, 1252–1259.

    Article  CAS  Google Scholar 

  10. Nakamura, T., Yamagata, Y., & Ichishima, E. (1992). Biosci Biotechnol Biochem, 56, 1869–1871.

    Article  CAS  Google Scholar 

  11. Wei, X., Luo, M., Xu, L., Zhang, Y., Lin, X., Kong, P., et al. (2011). J Agric Food Chem, 59, 3957–3963.

    Article  CAS  Google Scholar 

  12. Kimura, K., & Itoh, Y. (2003). Appl Environ Microbiol, 69, 2491–2497.

    Article  CAS  Google Scholar 

  13. Do, J. H., Chang, H. N., & Lee, S. Y. (2001). Biotechnol Bioeng, 76, 219–223.

    Article  CAS  Google Scholar 

  14. Inomata, N., Chin, K., Nagashima, M., & Ikezawa, Z. (2011). Allergol Int, 3, 393–396.

    Article  Google Scholar 

  15. Inomata, N., Nomura, Y., & Ikezawa, Z. (2011). J Dermatol, 38, 1–3.

    Article  Google Scholar 

  16. Hsieh, C.-W., Lu, W.-C., Hsieh, W.-C., Huang, Y.-P., Lai, C.-H., & Ko, W.-C. (2009). LWT—Food Sci Technol Int, 42, 144–149.

    CAS  Google Scholar 

  17. Law, D., & Zhang, Z. (2007). Drug Dev Ind Pharm, 33, 495–503.

    Article  CAS  Google Scholar 

  18. Sonaje, K., Chen, Y. J., Chen, H. L., Wey, S. P., Juang, J. H., Nguyen, H. N., et al. (2010). Biomaterials, 31, 3384–3394.

    Article  CAS  Google Scholar 

  19. Wei, X., Ji, Z., & Chen, S. (2010). Appl Biochem Biotechnol, 160, 1332–1340.

    Article  CAS  Google Scholar 

  20. Kim, S. H., & Choi, N. S. (2000). Biosci Biotechnol Biochem, 64, 1722–1725.

    Article  CAS  Google Scholar 

  21. Peng, Y., Huang, Q., Zhang, R. H., & Zhang, Y. Z. (2003). Comp Biochem Physiol B Biochem Mol Biol, 134, 45–52.

    Article  Google Scholar 

  22. Zhao, S., Zhang, L., Gao, P., & Shao, Z. (2009). Food Chem, 114, 869–873.

    Article  CAS  Google Scholar 

  23. Takoaka, S. (2006) U.S. Patent 20060263865

  24. Wang, C., Du, M., Zheng, D., Kong, F., Zu, G., & Feng, Y. (2009). J Agric Food Chem, 57, 9722–9729.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Innovative Research Group Science Fund (no. Y020308133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingfang Luo or Huizhou Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, X., Luo, M., Xie, Y. et al. Strain Screening, Fermentation, Separation, and Encapsulation for Production of Nattokinase Functional Food. Appl Biochem Biotechnol 168, 1753–1764 (2012). https://doi.org/10.1007/s12010-012-9894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9894-2

Keywords

Navigation