Skip to main content

Advertisement

Log in

Graphene Oxide as a Matrix for the Immobilization of Glucose Oxidase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The adsorption of glucose oxidase (GOD) on graphene oxide (GO) nanoparticles without using any cross-linking reagents and/or additional surface modification was studied. Results of Fourier-transform infrared and ultraviolet–visible absorption spectroscopy confirmed that GOD was successfully immobilized on GO surface. The obtained immobilized GOD showed a wide range of pH stability and improved thermal and storage stability. In addition, GO exhibited good biocompatibility, which has potential advantages for biomedical and clinical diagnosis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase-an overview. Biotechnology Advances, 27, 489–501.

    Article  CAS  Google Scholar 

  2. Cides da Silva, L. C., Infante, C. M. C., Lima, A. W. O., Cosentino, I. C., Fantini, M. C. A., Rocha, F. R. P., et al. (2011). Immobilization of glucose oxidase enzyme (GOD) in large pore ordered mesoporous cage-like FDU-1 silica. Journal of Molecular Catalysis B: Enzymatic, 70, 149–153.

    Article  CAS  Google Scholar 

  3. Gouda, M. D., Thakur, M. S., & Karanth, N. G. (2002). Reversible denaturation behavior of immobilized glucose oxidase. Applied Biochemistry and Biotechnology, 102–103, 471–480.

    Article  Google Scholar 

  4. Lourenço, N. M. T., Österreicher, J., Vidinha, P., Barreiros, S., Afonso, C. A. M., Cabral, J. M. S., et al. (2011). Effect of gelatin-ionic liquid functional polymers on glucose oxidase and horseradish peroxidase kinetics. Reactive and Functional Polymers, 71, 489–495.

    Article  Google Scholar 

  5. Li, Z. F., Kang, E. T., Neoh, K. G., & Tan, K. L. (1998). Covalent immobilization of glucose oxidase on the surface of polyaniline films graft copolymerized with acrylic acid. Biomaterials, 19, 45–53.

    Article  CAS  Google Scholar 

  6. Ying, L., Kang, E. T., & Neoh, K. G. (2002). Covalent immobilization of glucose oxidase on microporous membranes prepared from poly(vinylidene fluoride) with grafted poly(acrylic acid) side chains. Journal of Membrane Science, 208, 361–374.

    Article  CAS  Google Scholar 

  7. Sohn, O. J., Kim, C. K., & Rhee, J. I. (2008). Immobilization of glucose oxidase and lactate dehydrogenase onto magnetic nanoparticles for bioprocess monitoring system. Biotechnology and Bioprocess Engineering, 13, 716–723.

    Article  CAS  Google Scholar 

  8. Huang, J., Zhao, R., Wang, H., Zhao, W. Q., & Ding, L. Y. (2010). Immobilization of glucose oxidase on Fe3O4/SiO2 magnetic nanoparticles. Biotechnology Letters, 32, 817–821.

    Article  CAS  Google Scholar 

  9. Huang, J., Wang, H., Li, D. P., Zhao, W. Q., Ding, L. Y., & Han, Y. (2011). A new immobilized glucose oxidase using SiO2 nanoparticles as carrier. Materials Science and Engineering C, 31, 1374–1378.

    Article  CAS  Google Scholar 

  10. Venugopal, G., Krishnamoorthy, K., Mohan, R., & Kim, S. J. (2012). An investigation of the electrical transport properties of graphene-oxide thin films. Materials Chemistry and Physics, 132, 29–33.

    Article  CAS  Google Scholar 

  11. Liu, Y., Yu, D. S., Zeng, C., Miao, Z. C., & Dai, L. M. (2010). Biocompatible graphene oxide–based glucose biosensors. Langmuir, 26, 6158–6160.

    Article  CAS  Google Scholar 

  12. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., et al. (2006). Graphene-based composite materials. Nature, 442, 282–286.

    Article  CAS  Google Scholar 

  13. Kassaee, M. Z., Motamedi, E., & Majdi, M. (2011). Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite. Chemical Engineering Journal, 172, 540–549.

    Article  CAS  Google Scholar 

  14. Zhang, J. L., Zhang, F., Yang, H. J., Huang, X. L., Liu, H., Zhang, J. Y., et al. (2010). Graphene oxide as a matrix for enzyme immobilization. Langmuir, 26, 6083–6085.

    Article  CAS  Google Scholar 

  15. Betancor, L., & Luckarift, H. R. (2008). Bioinspired enzyme encapsulation for biocatalysis. Trends in Biotechnology, 26, 566–572.

    Article  CAS  Google Scholar 

  16. Jia, H., Zhu, G., & Wang, P. (2003). Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnology and Bioengineering, 84, 406–414.

    Article  CAS  Google Scholar 

  17. Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339–1339.

    Article  CAS  Google Scholar 

  18. Hou, X. H., Liu, B. L., Deng, X. B., Zhang, B. T., Chen, H. L., & Luo, R. (2007). Covalent immobilization of glucose oxidase onto poly(styrene-co-glycidyl methacrylate) monodisperse fluorescent microspheres synthesized by dispersion polymerization. Analytical Biochemistry, 368, 100–110.

    Article  CAS  Google Scholar 

  19. Park, S., An, J., Piner, R. D., Jung, I., Yang, D., Velamakanni, A., et al. (2008). Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of Materials, 20, 6592–6594.

    Article  CAS  Google Scholar 

  20. Chen, W. F., Yan, L. F., & Bangal, P. R. (2010). Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 48, 1146–1152.

    Article  CAS  Google Scholar 

  21. Jung, Y. C., Muramatsu, H., Fujisawa, K., Kim, J. H., Hayashi, T., Kim, Y. A., et al. (2011). Optically and biologically active mussel protein-coated double-walled carbon nanotubes. Small., 7, 3292–3297.

    Article  CAS  Google Scholar 

  22. Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., et al. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1, 203–212.

    Article  CAS  Google Scholar 

  23. Liu, F., Choi, J. Y., & Seo, T. S. (2010). Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosensors and Bioelectronics, 25, 2361–2365.

    Article  CAS  Google Scholar 

  24. Karim, M. R., & Hashinaga, F. (2002). Preparation and properties of immobilized pummelo limonoid glucosyltransferase. Process Biochemistry, 38, 809–814.

    Article  CAS  Google Scholar 

  25. Su, R. J., Shi, P. H., Zhu, M. C., Hong, F., & Li, D. X. (2012). Studies on the properties of graphene oxide-alkaline protease bio-composites. Bioresource Technology, 115, 136–140.

    Article  CAS  Google Scholar 

  26. Zhang, Y. F., Wu, H., Li, L., Li, J., Jiang, Z. Y., Jiang, Y. J., et al. (2009). Enzymatic conversion of baicalin into baicalein by β-glucuronidase encapsulated in biomimetic core-shell structured hybrid capsules. Journal of Molecular Catalysis B: Enzymatic, 57, 130–135.

    Article  CAS  Google Scholar 

  27. Gouda, M. D., Singh, S. A., Rao, A. G., Thakur, M. S., & Karanth, N. G. (2003). Thermal inactivation of glucose oxidase. Mechanism and stabilization using additives. Journal of Biological Chemistry, 278, 24324–24333.

    Article  CAS  Google Scholar 

  28. Zoldák, G., Zubrik, A., Musatov, A., Stupák, M., & Sedlák, E. (2004). Irreversible thermal denaturation of glucose oxidase from Aspergillus niger is the transitionto the denatured state with residual structure. Journal of Biological Chemistry, 279, 47601–47609.

    Article  Google Scholar 

  29. Caves, M. S., Derham, B. K., Jezek, J., & Freedman, R. B. (2011). The mechanism of inactivation of glucose oxidase from Penicillium amagasakiense under ambient storage conditions. Enzyme and Microbial Technology, 49, 79–87.

    Article  CAS  Google Scholar 

  30. He, C. X., Liu, J. H., Xie, L. Y., Zhang, Q. L., Li, C. H., Gui, D. Y., et al. (2009). Activity and thermal stability improvements of glucose oxidase upon adsorption on core-shell PMMA-BSA nanoparticles. Langmuir, 25, 13456–13460.

    Article  CAS  Google Scholar 

  31. Zhang, F., Zheng, B., Zhang, J. L., Huang, X. L., Liu, H., Guo, S. W., et al. (2010). Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. Journal of Physical Chemistry C, 114, 8469–8473.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (No. 21006020), the Natural Science Foundation of Hebei Province (B2010000035, B2011202095), the Science and Technology Research Key Project of Higher School in Hebei Province (ZD2010118), and the Application Basic Research Plan Key Basic Research Project of Hebei Province (11965150D). This work was also supported by the Open Funding Project of the National Key Laboratory of Biochemical Engineering (China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Gao or Xinqiang Zhao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6397 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Jiang, Y., Gao, J. et al. Graphene Oxide as a Matrix for the Immobilization of Glucose Oxidase. Appl Biochem Biotechnol 168, 1635–1642 (2012). https://doi.org/10.1007/s12010-012-9884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9884-4

Keywords