Abstract
The adsorption of glucose oxidase (GOD) on graphene oxide (GO) nanoparticles without using any cross-linking reagents and/or additional surface modification was studied. Results of Fourier-transform infrared and ultraviolet–visible absorption spectroscopy confirmed that GOD was successfully immobilized on GO surface. The obtained immobilized GOD showed a wide range of pH stability and improved thermal and storage stability. In addition, GO exhibited good biocompatibility, which has potential advantages for biomedical and clinical diagnosis applications.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase-an overview. Biotechnology Advances, 27, 489–501.
Cides da Silva, L. C., Infante, C. M. C., Lima, A. W. O., Cosentino, I. C., Fantini, M. C. A., Rocha, F. R. P., et al. (2011). Immobilization of glucose oxidase enzyme (GOD) in large pore ordered mesoporous cage-like FDU-1 silica. Journal of Molecular Catalysis B: Enzymatic, 70, 149–153.
Gouda, M. D., Thakur, M. S., & Karanth, N. G. (2002). Reversible denaturation behavior of immobilized glucose oxidase. Applied Biochemistry and Biotechnology, 102–103, 471–480.
Lourenço, N. M. T., Österreicher, J., Vidinha, P., Barreiros, S., Afonso, C. A. M., Cabral, J. M. S., et al. (2011). Effect of gelatin-ionic liquid functional polymers on glucose oxidase and horseradish peroxidase kinetics. Reactive and Functional Polymers, 71, 489–495.
Li, Z. F., Kang, E. T., Neoh, K. G., & Tan, K. L. (1998). Covalent immobilization of glucose oxidase on the surface of polyaniline films graft copolymerized with acrylic acid. Biomaterials, 19, 45–53.
Ying, L., Kang, E. T., & Neoh, K. G. (2002). Covalent immobilization of glucose oxidase on microporous membranes prepared from poly(vinylidene fluoride) with grafted poly(acrylic acid) side chains. Journal of Membrane Science, 208, 361–374.
Sohn, O. J., Kim, C. K., & Rhee, J. I. (2008). Immobilization of glucose oxidase and lactate dehydrogenase onto magnetic nanoparticles for bioprocess monitoring system. Biotechnology and Bioprocess Engineering, 13, 716–723.
Huang, J., Zhao, R., Wang, H., Zhao, W. Q., & Ding, L. Y. (2010). Immobilization of glucose oxidase on Fe3O4/SiO2 magnetic nanoparticles. Biotechnology Letters, 32, 817–821.
Huang, J., Wang, H., Li, D. P., Zhao, W. Q., Ding, L. Y., & Han, Y. (2011). A new immobilized glucose oxidase using SiO2 nanoparticles as carrier. Materials Science and Engineering C, 31, 1374–1378.
Venugopal, G., Krishnamoorthy, K., Mohan, R., & Kim, S. J. (2012). An investigation of the electrical transport properties of graphene-oxide thin films. Materials Chemistry and Physics, 132, 29–33.
Liu, Y., Yu, D. S., Zeng, C., Miao, Z. C., & Dai, L. M. (2010). Biocompatible graphene oxide–based glucose biosensors. Langmuir, 26, 6158–6160.
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., et al. (2006). Graphene-based composite materials. Nature, 442, 282–286.
Kassaee, M. Z., Motamedi, E., & Majdi, M. (2011). Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite. Chemical Engineering Journal, 172, 540–549.
Zhang, J. L., Zhang, F., Yang, H. J., Huang, X. L., Liu, H., Zhang, J. Y., et al. (2010). Graphene oxide as a matrix for enzyme immobilization. Langmuir, 26, 6083–6085.
Betancor, L., & Luckarift, H. R. (2008). Bioinspired enzyme encapsulation for biocatalysis. Trends in Biotechnology, 26, 566–572.
Jia, H., Zhu, G., & Wang, P. (2003). Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnology and Bioengineering, 84, 406–414.
Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339–1339.
Hou, X. H., Liu, B. L., Deng, X. B., Zhang, B. T., Chen, H. L., & Luo, R. (2007). Covalent immobilization of glucose oxidase onto poly(styrene-co-glycidyl methacrylate) monodisperse fluorescent microspheres synthesized by dispersion polymerization. Analytical Biochemistry, 368, 100–110.
Park, S., An, J., Piner, R. D., Jung, I., Yang, D., Velamakanni, A., et al. (2008). Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of Materials, 20, 6592–6594.
Chen, W. F., Yan, L. F., & Bangal, P. R. (2010). Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 48, 1146–1152.
Jung, Y. C., Muramatsu, H., Fujisawa, K., Kim, J. H., Hayashi, T., Kim, Y. A., et al. (2011). Optically and biologically active mussel protein-coated double-walled carbon nanotubes. Small., 7, 3292–3297.
Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., et al. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1, 203–212.
Liu, F., Choi, J. Y., & Seo, T. S. (2010). Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosensors and Bioelectronics, 25, 2361–2365.
Karim, M. R., & Hashinaga, F. (2002). Preparation and properties of immobilized pummelo limonoid glucosyltransferase. Process Biochemistry, 38, 809–814.
Su, R. J., Shi, P. H., Zhu, M. C., Hong, F., & Li, D. X. (2012). Studies on the properties of graphene oxide-alkaline protease bio-composites. Bioresource Technology, 115, 136–140.
Zhang, Y. F., Wu, H., Li, L., Li, J., Jiang, Z. Y., Jiang, Y. J., et al. (2009). Enzymatic conversion of baicalin into baicalein by β-glucuronidase encapsulated in biomimetic core-shell structured hybrid capsules. Journal of Molecular Catalysis B: Enzymatic, 57, 130–135.
Gouda, M. D., Singh, S. A., Rao, A. G., Thakur, M. S., & Karanth, N. G. (2003). Thermal inactivation of glucose oxidase. Mechanism and stabilization using additives. Journal of Biological Chemistry, 278, 24324–24333.
Zoldák, G., Zubrik, A., Musatov, A., Stupák, M., & Sedlák, E. (2004). Irreversible thermal denaturation of glucose oxidase from Aspergillus niger is the transitionto the denatured state with residual structure. Journal of Biological Chemistry, 279, 47601–47609.
Caves, M. S., Derham, B. K., Jezek, J., & Freedman, R. B. (2011). The mechanism of inactivation of glucose oxidase from Penicillium amagasakiense under ambient storage conditions. Enzyme and Microbial Technology, 49, 79–87.
He, C. X., Liu, J. H., Xie, L. Y., Zhang, Q. L., Li, C. H., Gui, D. Y., et al. (2009). Activity and thermal stability improvements of glucose oxidase upon adsorption on core-shell PMMA-BSA nanoparticles. Langmuir, 25, 13456–13460.
Zhang, F., Zheng, B., Zhang, J. L., Huang, X. L., Liu, H., Guo, S. W., et al. (2010). Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. Journal of Physical Chemistry C, 114, 8469–8473.
Acknowledgments
This work was supported by the National Nature Science Foundation of China (No. 21006020), the Natural Science Foundation of Hebei Province (B2010000035, B2011202095), the Science and Technology Research Key Project of Higher School in Hebei Province (ZD2010118), and the Application Basic Research Plan Key Basic Research Project of Hebei Province (11965150D). This work was also supported by the Open Funding Project of the National Key Laboratory of Biochemical Engineering (China).
Author information
Authors and Affiliations
Corresponding authors
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
ESM 1
(DOC 6397 kb)
Rights and permissions
About this article
Cite this article
Zhou, L., Jiang, Y., Gao, J. et al. Graphene Oxide as a Matrix for the Immobilization of Glucose Oxidase. Appl Biochem Biotechnol 168, 1635–1642 (2012). https://doi.org/10.1007/s12010-012-9884-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-012-9884-4


