Skip to main content
Log in

Kinetic Involvement of Acetaldehyde Substrate Inhibition on the Rate Equation of Yeast Aldehyde Dehydrogenase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to evaluate the effectiveness of aldehyde dehydrogenase (ALDH) from Saccharomyces cerevisiae as a catalyst for the conversion of acetaldehyde into its physiologically and biologically less toxic acetate, the kinetics over broad concentrations were studied to develop a suitable kinetic rate expression. Even with literature accounts of the binding complexations, the yeast ALDH currently lacks a quantitative kinetic rate expression accounting for simultaneous inhibition parameters under higher acetaldehyde concentrations. Both substrate acetaldehyde and product NADH were observed as individual sources of inhibition with the combined effect of a ternary complex of acetaldehyde and the coenzyme leading to experimental rates as little as an eighth of the expected activity. Furthermore, the onset and strength of inhibition from each component were directly affected by the concentration of the co-substrate NAD. While acetaldehyde inhibition of ALDH is initiated below concentrations of 0.05 mM in the presence of 0.5 mM NAD or less, the acetaldehyde inhibition onset shifts to 0.2 mM with as much as 1.6 mM NAD. The convenience of the statistical software package JMP allowed for effective determination of experimental kinetic constants and simplification to a suitable rate expression:

$$ v = \frac{{Vmax\left( {{\text A}{\text B}} \right)}}{{KiaKb + KbA + KaB + AB + \frac{{{B^2}}}{{KI-Ald}} + \frac{{{B^2}Q}}{{KI-Ald-NADH}} + \frac{{BQ}}{{KI-NADH}}}} $$

where the last three terms represent the inhibition complex terms for acetaldehyde, acetaldehyde–NADH, and NADH, respectively. The corresponding values of K I–Ald, K I–Ald–NADH, and K I–NADH for yeast ALDH are 2.55, 0.0269, and 0.162 mM at 22 °C and pH 7.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jakoby, W. B. (1959). The Enzymes, 7, 203–221.

    Google Scholar 

  2. Navarro-Avino, J. P., Prasad, R., Miralles, V. J., Benito, R. M., & Serrano, R. (1999). Yeast, 15, 829–842. doi:10.1002/(SICI)1097-0061(199907)15:10A<829::AID-YEA423>3.0.CO;2-9.

    Article  CAS  Google Scholar 

  3. Pappa, A., Sophos, N. A., & Vasiliou, V. (2001). Chemico-Biological Interactions, 130–132(1–3), 181–191.

    Article  Google Scholar 

  4. Vasilis, V., Aglaia, P., & Petersen, D. R. (2000). Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chemico-Biological Interactions, 129(1–2), 1–19.

    Article  Google Scholar 

  5. Wang, M. F., Han, C. L., & Yin, S. J. (2009). Chemico-Biological Interactions, 178(1-3), 36–39. Epub 2008 Oct 15.

    Article  CAS  Google Scholar 

  6. Shum, G. T., & Blair, A. H. (1972). Canadian Journal of Biochemistry, 50, 741–748.

    Article  CAS  Google Scholar 

  7. Deitrich, R. A., Collins, A. C., & Erwin, V. G. (1972). Journal of Biological Chemistry, 247, 7232–7236.

    CAS  Google Scholar 

  8. Ikawa, M., Impraim, C. C., Wang, G., & Yoshida, A. (1983). Journal of Biological Chemistry, 258, 6282–6287.

    CAS  Google Scholar 

  9. Black, S. (1951). Archives of Biochemistry and Biophysics, 34, 86–97.

    Article  CAS  Google Scholar 

  10. Seegmiller, J. E. (1953). Journal of Biological Chemistry, 201(2), 629–637.

    CAS  Google Scholar 

  11. Dickinson, F. M., & Haywood, G. W. (1987). Biochemistry Journal, 247(2), 377–384.

    CAS  Google Scholar 

  12. Dickinson, F. M. (1996). Biochemistry Journal, 315(2), 393–399.

    CAS  Google Scholar 

  13. Freda, C. E., & Stoppani, A. O. M. (1970). Enzymologia, 38, 225–242.

    CAS  Google Scholar 

  14. Bradbury, S. L., & Jakoby, W. B. (1971). Journal of Biological Chemistry, 246, 1834–1840.

    CAS  Google Scholar 

  15. Liu, Z.-J., Sun, Y.-J., Rose, J., Chung, Y.-J., Hsiao, C.-D., Chang, W.-R., et al. (1997). Nature Structural Biology, 4, 317–326.

    Article  CAS  Google Scholar 

  16. Dickinson, F. M. (2003). Chemico-Biological Interactions, 143–144, 169–174.

    Article  Google Scholar 

  17. Milstein, S., & Stoppani, A. O. M. (1958). Biochimica et Biophysica Acta, 28, 218.

    Article  CAS  Google Scholar 

  18. Bostian, K. A., & Betts, G. F. (1978). Biochemical Journal, 173, 773–786.

    CAS  Google Scholar 

  19. Alberty, R. A. (1953). J. Amer. chem. Soc., 75, 1928.

    Article  CAS  Google Scholar 

  20. Wang, X., Mann, C. J., Bai, Y., Ni, L., & Weiner, H. (1998). Journal of Bacteriology, 180(4), 822–830.

    CAS  Google Scholar 

  21. Cleland, W. W. (1967). Annual Review of Biochemistry, 36, 77–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Department of Education GAANN Program Grant P200A060184 provided fellowship support for Matthew Eggert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Chambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggert, M.W., Byrne, M.E. & Chambers, R.P. Kinetic Involvement of Acetaldehyde Substrate Inhibition on the Rate Equation of Yeast Aldehyde Dehydrogenase. Appl Biochem Biotechnol 168, 824–833 (2012). https://doi.org/10.1007/s12010-012-9822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9822-5

Keywords

Navigation