Abstract
The lipase from Pseudomonas fluorescens (Lipase AK, AKL) was immobilized onto the magnetic Fe3O4 nanoparticles via hydrophobic interaction. Enzyme loading and immobilization yield were determined as 21.4 ± 0.5 mg/g and 49.2 ± 1.8 %, respectively. The immobilized AKL was successfully used for resolution of 2-octanol with vinyl acetate used as acyl donor. Effects of organic solvent, water activity, substrate ratio, and temperature were investigated. Under the optimum conditions, the preferred isomer for AKL is the (R)-2-octanol and the highest enantioselectivity (E = 71.5 ± 2.2) was obtained with a higher enzyme activity (0.197 ± 0.01 μmol/mg/min). The results also showed that the immobilized lipase could be easily separated from reaction media by the magnetic steel and remained 89 % of its initial activity as well as the nearly unchanged enantioselectivity after five consecutive cycles, indicating a high stability in practical operation.
This is a preview of subscription content, access via your institution.






Abbreviations
- AKL:
-
Lipase from Pseudomonas fluorescens (Lipase AK AKL) was purchased from Amano Pharmaceutical Co. Ltd. (Japan)
- a w :
-
Water activity
- E value:
-
The enantiomeric ratio
- ee:
-
The enantiomeric excess
References
Schmid, R. D., & Verger, R. (1998). Angewandte Chemie International Edition, 37, 1608–1633.
Reetz, M. T. (2002). Current Opinion in Chemical Biology, 6, 145–150.
Tutar, H., Yilmaz, E., Pehlivan, E., & Yilmaz, M. (2009). International Journal of Biological Macromolecules, 45, 315–320.
Sheldon, R. A. (2007). Advanced Synthesis and Catalysis, 349, 1289–1370.
Yang, P., Teo, W. K., & Ting, Y. P. (2006). Bioresource Technology, 97, 39–46.
Noureddini, H., Gao, X., & Philkana, R. S. (2005). Bioresource Technology, 96, 769–777.
Mateo, C., Palomo, J. M., Fernandez, L. G., Guisan, J. M., & Fernandez, L. R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.
Rodrigues, R. C., Berenguer, M. Á., & Fernandez, L. R. (2011). Advanced Synthesis and Catalysis, 353, 2216–2238.
Brady, D., & Jordaan, J. (2009). Biotechnology Letters, 31, 1639–1650.
Iyer, P. V., & Ananthanarayan, L. (2008). Process Biochemistry, 43, 1019–1032.
Fernandez, L. R. (2009). Enzyme and Microbial Technology, 45, 405–418.
Hernandez, K., & Fernandez, L. R. (2011). Enzyme and Microbial Technology, 48, 107–122.
Garcia, G. C., Berenguer, M. A., Fernandez, L. R., & Rodrigues, R. C. (2011). Advanced Synthesis and Catalysis, 353, 2885–2904.
Gupta, A. K., & Gupta, M. (2005). Biomaterials, 26, 3995–4021.
Li, X. H., & Sun, Z. H. (2003). Journal of Applied Polymer Science, 58, 1991–1997.
Lu, A. H., Salabas, E. L., & Schuth, F. (2007). Angewandte Chemie International Edition, 46, 1222–1244.
Pan, C. L., Hu, B., Li, W., Sun, Y., Ye, H., & Zeng, X. X. (2009). Journal of Molecular Catalysis B: Enzymatic, 61, 208–215.
Bai, S., Guo, Z., Liu, W., & Sun, Y. (2006). Food Chemistry, 96, 1–7.
Kuroiwa, T., Noguchi, Y., Nakajima, M., Sato, S., Mukataka, S., & Ichikawa, S. (2008). Process Biochemistry, 43, 62–69.
Yong, Y., Bai, Y. X., Li, Y. F., Lin, L., Cui, Y. J., & Xia, C. G. (2008). Process Biochemistry, 43, 1179–1185.
Cui, Y. J., Li, Y. F., Yang, Y., Liu, X., Lin, L., Zhou, L. C., & Pan, F. (2010). Journal of Biotechnology, 150, 171–174.
Zhao, G., Bai, S., & Sun, Y. (2003). Enzyme and Microbial Technology, 32, 776–782.
Jiang, D. S., Sheng, Y. L., Huang, J., Xiao, H. Y., & Zhou, J. Y. (2005). Biochemical Engineering Journal, 25, 15–23.
Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., & Shafi, K. V. P. M. (2003). Journal of the American Chemical Society, 125, 1684–1685.
Liu, X. Q., Guana, Y. P., Shen, R., & Liu, H. Z. (2005). Journal of Chromatography B, 822, 91–97.
Andradea, L. H., Rebelo, L. P., Netto, C. G. C. M., & Toma, H. E. (2010). Journal of Molecular Catalysis B: Enzymatic 66, 55–62.
McCabe, R. W., & Taylor, A. (2004). Tetrahedron, 60, 765–770.
Lee, S. Y., & Rhee, J. S. (1993). Enzyme and Microbial Technology, 15, 617–623.
Halling, P. J. (1992). Biotechnology Technology, 6, 271–276.
Chen, C. S., Fujimoto, Y., Girdaukas, G., & Charles, J. S. (1982). Journal of the American Chemical Society, 104, 1294–1299.
Paravidino, M., Sorgedrager, M. J., Romano, V. A. O., & Hanefeld, U. (2010). Chemistry, 16, 7596–7604.
Paul, A. F., & Alexander, M. K. (1991). Journal of the American Chemical Society, 113, 3166–3171.
Gorman, L. A. S., & Dordick, J. S. (1992). Biotechnology and Bioengineering, 39, 392–397.
Giacometti, J., & Giacometti, F. (2006). Chemical and Biochemical Engineering, 20, 269–274.
Halling, P. J. (1994). Enzyme and Microbial Technology, 16, 178–206.
Ganapati, D. Y., & Archana, H. T. (2003). Enzyme and Microbial Technology, 32, 783–789.
Bayramoglu, G., Yilmaz, M., & Arica, M. Y. (2004). Food Chemistry, 84, 591–599.
Phillips, R. S. (1996). Trends in Biotechnology, 14, 13–16.
Fernández-Lafuente, R., Armisén, P., Sabuquillo, P., Fernández-Lorente, G., & Guisán, J. M. (1998). Chemistry and Physics of Lipid, 93, 185–197.
Fernández-Lorente, G., Palomo, J. M., Cabrera, Z., Guisán, J. M., & Fernández-Lafuente, R. (2007). Enzyme and Microbial Technology, 41, 565–569.
Palomo, J. M., Segura, R. L., Fernández-Lorente, G., Dernas, M., Rua, M. C., Guisán, J. M., & Fernández-Lafuente, R. (2004). Biotechnology Process, 20, 630–635.
Palomo, J. M., Fernández-Lorente, G., Mateo, C., Ortiz, C., Fernández-Lafuente, R., & Guisán, J. M. (2002). Enzyme and Microbial Technology, 31, 775–783.
Yu, D. H., Chen, P., Wang, L., Cheng, Y. M., Wang, Z., & Cao, S. G. (2007). Process Biochemistry, 42, 1312–1318.
Yu, D. H., Wang, Z., Zhao, L. F., Cheng, Y. M., & Cao, S. G. (2007). Journal of Molecular Catalysis B: Enzymatic, 48, 64–69.
Yu, D. H., Wang, Z., Chen, P., Jin, L., Cheng, Y. M., Zhou, J. G., & Cao, S. G. (2007). Journal of Molecular Catalysis B: Enzymatic, 48, 51–57.
Yu, D. H., Ma, D. X., Wang, Z., Wang, Y., Pan, Y., & Fang, X. X. (2012). Process Biochemistry, 47, 479–484.
Zhao, L. F., & Zheng, L. Y. (2011). Biocatalysis and Biotransformation, 29, 47–53.
Du, C., Zhao, B., Li, C. Y., Wang, P., Wang, Z., Tang, J., & Wang, L. (2009). Biocatalysis and Biotransformation, 27, 340–347.
Acknowledgments
The authors are grateful for the financial supports from National Natural Science Foundation of China (nos. 31070708, 20772046, and 21172093) and the Natural Science Foundation of Jilin Province (no. 201115038).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Xun, En., Lv, Xl., Kang, W. et al. Immobilization of Pseudomonas fluorescens Lipase onto Magnetic Nanoparticles for Resolution of 2-Octanol. Appl Biochem Biotechnol 168, 697–707 (2012). https://doi.org/10.1007/s12010-012-9810-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-012-9810-9