Skip to main content
Log in

Production of XynX, a Large Multimodular Protein of Clostridium thermocellum, by Protease-Deficient Bacillus subtilis Strains

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 05 October 2012

Abstract

XynX of Clostridium thermocellum is a large, multimodular xylanase of 116 kDa. An Escherichia coli transformant carrying the entire xynX produced three active truncated xylanase species of 105, 85, and 64 kDa intracellularly. The Bacillus subtilis WB700 transformant with the xynX, a strain deficient in seven proteases including Vpr, secreted two active truncated xylanase species of 65 and 44 kDa. The B. subtilis WB800 transformant with xynX, a strain deficient in eight proteases including Vpr and WprA, secreted more active enzymes, 8.46 U ml−1, mostly in the form of 105 and 85 kDa, than the WB700 transformant, 6.93 U ml−1. This indicates that the additional deletion of wprA enabled the WB800 to secrete XynX in its intact form. B. subtilis WB800 produced more total enzyme activity than E. coli (1,692 ± 274 U vs. 141.9 ± 27.1 U), and, more importantly, secreted almost all the enzyme activity. The results suggest the potential use of B. subtilis WB800 as a host system for the production of large multimodular proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aminov, R. I., Golovchenko, N. P., & Ohmiya, K. (1995). Journal of Fermentation and Bioengineering, 79, 530–537.

    Article  CAS  Google Scholar 

  2. Yang, M. J., Jung, S. H., Shin, E. S., Kim, J., Yun, H. D., Wong, S. L., et al. (2004). Journal of Microbiology and Biotechnology, 14, 430–434.

    CAS  Google Scholar 

  3. Wu, S. C., Yeung, J. C., Duan, Y., Ye, R., Szarka, S. J., Habibi, H. R., et al. (2002). Applied and Environmental Microbiology, 67, 3261–3269.

    Article  Google Scholar 

  4. Corvey, C., Stein, T., Düsterhus, S., Karas, M., & Entian, K. D. (2003). Biochemical and Biophysical Research Communications, 304, 48–54.

    Article  CAS  Google Scholar 

  5. Murashima, K., Chen, C. L., Kosugi, A., Tamaru, Y., Doi, R. H., & Wong, S. L. (2002). Journal of Bacteriology, 184, 76–81.

    Article  CAS  Google Scholar 

  6. Cho, H. Y., Yukawa, H., Inui, M., Doi, R. H., & Wong, S. L. (2004). Applied and Environmental Microbiology, 70, 5704–5707.

    Article  CAS  Google Scholar 

  7. Westers, L., Dijkstra, D. S., Westers, H., van Dijl, J. M., & Quax, W. J. (2006). Journal of Biotechnology, 123, 211–224.

    Article  CAS  Google Scholar 

  8. Lu, Y., Lin, Q., Wang, J., Wu, Y., Bao, W., Lv, F., et al. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 919–925.

    Article  CAS  Google Scholar 

  9. Zhang, W., Lou, K., & Li, G. (2010). Applied Biochemistry and Biotechnology, 160, 1484–1495.

    Article  CAS  Google Scholar 

  10. Balat, M., & Balat, H. (2009). Applied Energy, 86, 2273–2282.

    Article  CAS  Google Scholar 

  11. Classen, H. L. (1996). Animal Feed Science and Technology, 62, 21–27.

    Article  CAS  Google Scholar 

  12. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  13. Demain, A. L., Newcomb, M., & Wu, J. H. (2005). Microbiology and Molecular Biology Reviews, 69, 124–154.

    Article  CAS  Google Scholar 

  14. Viikari, L., Kantelinen, A., Sundquist, J., & Linko, M. (1994). FEMS Microbiology Reviews, 13, 335–350.

    Article  CAS  Google Scholar 

  15. Jimenez, L., Navarro, E., Ferrer, J. L., Lopez, F., & Ariza, J. (1999). Process Biochemistry, 35, 149–157.

    Article  CAS  Google Scholar 

  16. Beg, Q. K., Bhushan, B., Kapoor, M., & Hoondal, G. S. (2000). Enzyme and Microbial Technology, 27, 459–466.

    Article  CAS  Google Scholar 

  17. Bayer, E. A., Belaich, J. P., Shoham, Y., & Lamed, R. (2004). Annual Review of Microbiology, 58, 521–554.

    Article  CAS  Google Scholar 

  18. Kim, H., Jung, K. H., & Pack, M. Y. (2000). Applied Microbiology and Biotechnology, 54, 521–527.

    Article  CAS  Google Scholar 

  19. Bayer, E., Shoham, Y., & Lamed, R. (2006). The Prokaryotes, Part 1, 578–617.

  20. Jung, K. H., Lee, K. M., Kim, H., Yoon, K. H., Park, S. H., & Pack, M. Y. (1998). Biochemistry and Molecular Biology International, 44, 283–292.

    CAS  Google Scholar 

  21. Shin, E. S., Yang, M. J., Jung, K. H., Kwon, E. J., Jung, J. S., Park, S. K., et al. (2002). Applied and Environmental Microbiology, 68, 3496–3501.

    Article  CAS  Google Scholar 

  22. Selvaraj, T., Kim, S. K., Kim, Y. H., Jeong, Y. S., Kim, Y. J., Phuong, N. D., et al. (2010). The Journal of Microbiology, 48, 856–861.

    Article  CAS  Google Scholar 

  23. Jung, K. H., & Pack, M. Y. (1993). Biotechnology Letters, 15, 115–120.

    Article  CAS  Google Scholar 

  24. Doi, R. H. (1983). In R. L. Rodriguez & R. C. Tait (Eds.), Recombinant DNA techniques: an introduction (pp. 184–186). Boston: Addison-Wesley.

    Google Scholar 

  25. Lowry, O. H., Bosenbrough, N. J., Farr, A. L., & Randell, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  26. van Leen, R. W., Bakhuis, J. G., van Beckhoven, R. F., Burger, H., Dorssers, L. C., Hommes, R. W., et al. (1991). Biotechnology (New York), 9, 47–52.

    Article  Google Scholar 

  27. Kim, H., Kim, S. F., Ahn, D. H., Lee, J. H., & Pack, M. Y. (1995). Journal of Microbiology and Biotechnology, 5, 26–30.

    Google Scholar 

  28. Kawabata, Y., Kimura, K., & Funane, K. (2012). Applied Microbiology and Biotechnology, 93, 1877–1884.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cooperation Research Program (PJ007449201006), Rural Development Administration, the Basic Research Program of the Korea Science and Engineering Foundation, and partially the 21C Frontier Microbial Genomics and Application Center Program, Ministry of Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Kim.

Additional information

Nguyen Dinh Phuong and Yu Seok Jeong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phuong, N.D., Jeong, Y.S., Selvaraj, T. et al. Production of XynX, a Large Multimodular Protein of Clostridium thermocellum, by Protease-Deficient Bacillus subtilis Strains. Appl Biochem Biotechnol 168, 375–382 (2012). https://doi.org/10.1007/s12010-012-9781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9781-x

Keywords

Navigation