Skip to main content
Log in

Fractionation of Sugarcane Bagasse Using a Combined Process of Dilute Acid and Ionic Liquid Treatments

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biorefineries processing lignocellulose will produce chemicals and fuels from chemical constituents, cellulose, hemicelluloses, and lignin to replace fossil-derived products. Fractionation of sugarcane bagasse into three pure streams of chemical constituents was addressed through dissolution of constituents with the ionic liquids, 1-ethyl-3-methylimidazolium acetate ([EMiM]CH3COO) or 1-butyl-3-methylimidazolium methyl sulfate ([BMiM]MeSO4). Constituents were isolated from the reaction mixture with the anti-solvents acetone (Ā), acetone–water (AW), and sodium hydroxide (NaOH). Delignification was enhanced by NaOH, although resulting in impure product streams. Xylose pre-extraction (75 % w/w) by dilute acid pretreatment, prior to ionic liquid treatment, improved lignin purity after anti-solvent separation. Fractionation efficiency of the combined process was maximized (84 %) by ionic liquid treatment at 125 °C for 120 min, resulting in 80.2 % (w/w) lignin removal and 76.5 % (w/w) lignin recovery. Ionic liquids achieved similar degrees of delignification, although fully digestible cellulose-rich solids were produced only by [EMiM]CH3COO treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. BP statistical review of world energy 2010. Available from: www.bp.com/statisticalreview. Accessed December 13, 2011.

  2. Rena, T., Daniëls, B., Patel, M. K., & Bloka, K. (2009). Resources, Conservation and Recycling, 53, 653–663.

    Article  Google Scholar 

  3. Sierra, R., Smith, A., Granda, C. B., & Holtzapple, M. T. (2008). Chemical Engineering Progress, 104, S10–S18.

    CAS  Google Scholar 

  4. Shafiee, S., & Topal, E. (2009). Energy Policy, 37, 181–189.

    Article  Google Scholar 

  5. Myerly, R. C., Nicholson, M. D., Katzen, R., & Taylor, J. M. (1981). Chemtech, 11, 186–192.

    CAS  Google Scholar 

  6. Lucia, L. A., Argyropoulos, D. S., Adamopoulos, L., & Gaspar, A. R. (2006). Canadian Journal of Chemistry, 84, 960–970.

    Article  CAS  Google Scholar 

  7. Bozell, J. J., Black, S. K., & Myers, M. (1995). Proceedings of the eighth International Symposium Of Wood and Pulping Chemicals (pp. 697–704). Finland: Helsinki.

    Google Scholar 

  8. Hsu, T.-A. (1996). In C. E. Wyman (Ed.), Handbook on bioethanol: production and utilization, chapter 10: pretreatment of biomass (pp. 179–212). Washington, DC: Taylor & Francis.

    Google Scholar 

  9. Papatheofanous, M. G., Billa, E., Koullas, D. P., Monties, B., & Koukios, E. G. (1995). Bioresource Technology, 54, 305–310.

    Article  CAS  Google Scholar 

  10. Heitz, M., Capek-Menard, E., Koeberle, P. G., Gagne, J., Chornet, E., Overend, R. P., Taylor, J. D., & Yu, E. (1991). Bioresource Technology, 35, 23–32.

    Article  CAS  Google Scholar 

  11. Kim, T. H., & Lee, Y. Y. (2005). Bioresource Technology, 96, 2007–2013.

    Article  CAS  Google Scholar 

  12. Lei, Y., Liu, S., Li, J., & Sun, R. (2010). Biotechnology Advances, 28, 609–612.

    Article  CAS  Google Scholar 

  13. Ucar, G., & Fengel, D. (1988). Holzforschung, 42, 141–148.

    Article  CAS  Google Scholar 

  14. Eggeman, T., & Elander, R. T. (2005). Bioresource Technology, 96, 2019–2025.

    Article  CAS  Google Scholar 

  15. Zhang, Y-P. H. Patent WO 2007/111605 A1, October 4, 2007.

  16. Zhang, Y.-P. H., Ding, S., Mielenz, J. R., Cui, J., Elander, R. T., Laser, M., Himmel, M. E., McMillan, J. R., & Lynd, L. R. (2007). Biotechnology and Bioengineering, 97, 214–223.

    Article  CAS  Google Scholar 

  17. Mora-Pale, M., Meli, L., Doherty, T. V., Linhardt, R. J., & Dordick, J. S. (2011). Biotechnology and Bioengineering, 108, 1229–1245.

    Article  CAS  Google Scholar 

  18. Olivier-Bourbigou, H., Magna, L., & Morvan, D. (2010). Applied Catalysis A, 373, 1–56.

    Article  CAS  Google Scholar 

  19. Shill, K., Padmanabhan, S., Xin, Q., Prausnitz, J., Clark, D. S., & Blanch, H. W. (2010). Biotechnology and Bioengineering, 108, 511–520.

    Article  Google Scholar 

  20. Bonhote, P., Dias, A. P., Papageorgiou, N., Kalyanasundaram, K., & Gratzel, M. (1996). Inorganic Chemistry, 35, 1168–1178.

    Article  CAS  Google Scholar 

  21. Fu, D., Mazza, G., & Tamaki, Y. (2010). Journal of Agricultural and Food Chemistry, 58(2915), 2922.

    Google Scholar 

  22. Lee, S. H., Doherty, T. V., Linhardt, R. J., & Dordick, J. S. (2009). Biotechnology and Bioengineering, 102, 1368–1376.

    Article  CAS  Google Scholar 

  23. Kilpeläinen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S., & Argyropoulos, D. S. (2007). Journal of Agricultural and Food Chemistry, 55, 9142–9148.

    Article  Google Scholar 

  24. Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Journal of the American Chemical Society, 124, 4974–4975.

    Article  CAS  Google Scholar 

  25. Xie, H., King, A., Kilpeläinen, I., Granstrom, M., & Argyropoulos, D. S. (2007). Biomacromolecules, 8, 3740–3748.

    Article  CAS  Google Scholar 

  26. Zhang, H., Wu, J., Zhang, J., & He, J. (2005). Macromolecules, 38, 8272–8277.

    Article  CAS  Google Scholar 

  27. Upfal, J., MacFarlane, D. R., and Forsyth, S. A. Patent WO 2005/01/017252 A1, August 13, 2005.

  28. Sun, N., Rahman, M., Qin, Y., Maxim, M. L., Rodríguez, H., & Rogers, R. D. (2009). Green Chemistry, 11, 646–655.

    Article  CAS  Google Scholar 

  29. Lan, W., Liu, C.-F., & Sun, R.-C. (2011). Journal of Agricultural and Food Chemistry, 59, 8691–8701.

    Article  CAS  Google Scholar 

  30. Edye, L. A., & Doherty, W. O. S. Patent WO 2008/095252 A1, August 14, 2008.

  31. Pu, Y., Jiang, N., & Ragauskas, A. J. (2007). Journal of Wood Chemistry and Technology, 27, 23–33.

    Article  CAS  Google Scholar 

  32. Doherty, T. V., Mora-Pale, M., Foley, S. E., Linhardt, R. J., & Dordick, J. S. (2010). Green Chemistry, 12, 1967–1975.

    Article  CAS  Google Scholar 

  33. Diedericks, D., van Rensburg, E., del Prado Garcia-Aparicio, M., & Görgens, J. F. (2012). Biotechnology Progress, 28, 76–84.

    Article  CAS  Google Scholar 

  34. Cartwright, K. St. G., & Findley W. P. K. (1958). Decay of timber and its prevention, 2nd ed., Her Majesty's Stationary Office, London.

  35. Determination of structural carbohydrates and lignin in biomass. Available from: www.nrel.gov. Accessed December 13, 2011.

  36. Measurement of cellulase activities. Available from: www.nrel.gov. Accessed December 13, 2011.

  37. Jacobsen, S. E., & Wyman, C. E. (2001). Applied Biochemistry and Biotechnology, 9, 377–386.

    Article  Google Scholar 

  38. Enzymatic saccharification of lignocellulosic biomass. Available from: www.nrel.gov. Accessed December 13, 2011.

  39. Myers, R. H., & Montgomery, D. C. (1995). Response surface methodology: product and process optimization using designed experiments. New York, NY: Wiley Interscience.

    Google Scholar 

  40. Simes, R. J. (1986). Biometrika, 73, 751–754.

    Article  Google Scholar 

  41. Zhu, J., Wan, C., & Li, Y. (2010). Bioresource Technology, 101, 7523–7528.

    Article  CAS  Google Scholar 

  42. Jiménez, L., de la Torre, M. J., Bonilla, J. L., & Ferrer, J. L. (1998). Process Biochemistry, 33, 401–408.

    Article  Google Scholar 

  43. Weimer, P. J., French, A. D., & Calamari, T. A. (1991). Applied and Environmental Microbiology, 57, 3101–3106.

    CAS  Google Scholar 

  44. Selig, M. J., Vinzant, T. B., Himmel, M. E., & Decker, S. R. (2009). Applied Biochemistry and Biotechnology, 155, 397–406.

    Article  CAS  Google Scholar 

  45. Yang, B., Gray, M. C., Liu, C., Lloyd, T. A., Stuhler, S. L., Converse, A. O., & Wyman, C. E. (2004). ACS Symposium Series, 889, 100–125.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank TSB Sugar for their financial support, and Genencor and Novozyme for providing the saccharification enzymes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann F. Görgens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diedericks, D., van Rensburg, E. & Görgens, J.F. Fractionation of Sugarcane Bagasse Using a Combined Process of Dilute Acid and Ionic Liquid Treatments. Appl Biochem Biotechnol 167, 1921–1937 (2012). https://doi.org/10.1007/s12010-012-9742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9742-4

Keywords

Navigation