Skip to main content
Log in

Manipulation of the Conformation and Enzymatic Properties of T1 Lipase by Site-Directed Mutagenesis of the Protein Core

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In silico and experimental investigations were conducted to explore the effects of substituting hydrophobic residues, Val, Met, Leu, Ile, Trp, and Phe into Gln 114 of T1 lipase. The in silico investigations accurately predicted the enzymatic characteristics of the mutants in the experimental studies and provided rationalization for some of the experimental observations. Substitution with Leu successfully improved the conformational stability and enzymatic characteristics of T1 lipase. However, replacement of Gln114 with Trp negatively affected T1 lipase and resulted in the largest disruption of protein stability, diminished lipase activity and inferior enzymatic characteristics. These results suggested that the substitution of a larger residue in a densely packed area of the protein core can have considerable effects on the structure and function of an enzyme. This is especially true when the residue is next to the catalytic serine as demonstrated with the Phe and Trp mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anil, B., Sato, S., Cho, J. H., & Raleigh, D. P. (2005). Fine structure analysis of a protein folding transition state: distinguishing between hydrophobic stabilization and specific packing. Journal of Molecular Biology, 354, 693–705.

    Article  CAS  Google Scholar 

  2. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  3. Carrasco-Lopez, C., Godoy, C., de las Rivas, B., Fernandez-Lafuente, G., Palomo, J. M., Guisan, J. M., et al. (2009). Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. The Journal of Biological Chemistry, 284, 4365–4372.

    Article  CAS  Google Scholar 

  4. Dandavate, V., Jayesh, J., Keharia, H., & Madamwar, D. (2009). Production, partial purification of organic solvent-tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresource Technology, 100, 3374–3381.

    Article  CAS  Google Scholar 

  5. Demetrius, L. (2002). Thermodynamics and kinetics of protein folding an evolutionary perspective. Journal of Theoretical Biology, 217, 397–411.

    Article  CAS  Google Scholar 

  6. Don, H., Ga, S., Han, S. P., & Cao, S. G. (1999). Purification and characterization of a Pseudomonas sp. Lipase and its properties in non-aqueous media. Biotechnology and Applied Biochemistry, 30, 251–156.

    Google Scholar 

  7. Eltaweel, M. A., Rahman, R. N. Z., Salleh, A. B., & Basri, M. (2005). An organic-solvent stable lipase from Bacillus sp. strain 42. Analytical Biochemistry, 53, 187–192.

    Google Scholar 

  8. Engelman, D. M., Steitz, T. A., & Goldman, A. (1986). Identifying non-polar transbilayer helices in amino acid sequences of membrane proteins. Annual Review of Biophysics and Biophysical Chemistry, 15, 321–353.

    Article  CAS  Google Scholar 

  9. Farber, P. J., & Mittermaier, A. (2008). Side chain burial and hydrophobic core packing in protein folding transition states. Protein Science, 4, 644–651.

    Article  Google Scholar 

  10. Hermoso, J., Pignolo, D., Kerfelec, B., Crenon, I., Chapus, C., & Fontecilla-Camps, J. (1996). Lipase activation by non-ionic detergents. The crystal structure of porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. Journal of Biological Chemistry, 271, 18007–18016.

    Article  CAS  Google Scholar 

  11. Hurley, J. H., Baase, W. A., & Matthews, B. W. (1992). Design and structural analysis of alternative hydrophobic core packing rearrangements in bacteriophage T4 lysozyme. Journal of Molecular Biology, 244, 1143–1159.

    Article  Google Scholar 

  12. Klibanov, A. M. (1997). Why are enzymes less active in organic solvents than in water? Trends in Biotechnology, 15, 77.

    Article  Google Scholar 

  13. Klibanov, A. M. (2001). Improving enzymes by using them in organic solvent. Nature, 409, 241–246.

    Article  CAS  Google Scholar 

  14. Kim, D. E., Gu, H., & Baker, D. (1998). The sequences of small proteins are not extensively optimized for rapid folding by natural selection. Proceedings of the National Academy of Science USA, 95, 4981–4986.

    Google Scholar 

  15. Kwon, D. K., & Rhee, J. S. (1986). A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. Journal of American Oil Chemistry Society, 63, 89–92.

    Article  CAS  Google Scholar 

  16. Laane, C., Boeren, S., Hilhorst, R., & Veeger, C. (1987). In C. Laane, J. Tramper, & M. D. Lilly (Eds.), Optimization of biocatalysis in organic media. Biocatalysis in organic media (pp. 65–84). Amsterdam: Elsevier.

    Google Scholar 

  17. Leow, T. C., Rahman, R. N. Z., Basri, M., & Salleh, A. B. (2004). High level expression of thermostable from Geobacillus sp. Strain T1. Bioscience. Biotechnology and Biochemistry, 68, 96–103.

    Article  CAS  Google Scholar 

  18. Leow, T. C. (2005). Ph.D. thesis, Universiti Putra Malaysia, Malaysia.

  19. Leow, T. C., Rahman, R. N. Z., Basri, M., & Salleh, A. B. (2007). A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles, 11, 527–535.

    Article  CAS  Google Scholar 

  20. Rahman, R. N. Z., Baharum, S. N., Basri, M., & Salleh, A. B. (2005). High yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Analytical Biochemistry, 341, 267–274.

    Article  CAS  Google Scholar 

  21. Rose, G. D., Fleming, P. J., Banawar, J. R., & Maritan, A. (2006). A backbone-based theory of protein folding. Proceedings of the National Academy of Science USA, 45, 16623–16633.

    Article  Google Scholar 

  22. Rother, K., Hildebrand, P. W., Goede, A., Gruening, B., & Preissner, R. (2009). Voronoia: analyzing packing in protein structures. Nucleic Acids Reviews, 37, D393–D395.

    Article  CAS  Google Scholar 

  23. Ruiz-Pena, M., Oropesa-Nuriez, R., Pons, T., Louro, S. R., & Perez-Gamatges, A. (2010). Physico-chemical studies of molecular interactions between non-ionic surfactants and bovine serum albumin. Colloids and Surfaces. B, Biointerfaces, 75, 282–289.

    Article  CAS  Google Scholar 

  24. Saraboji, K., Michael Gromiha, M., & Ponnuswamy, M. N. (2005). Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetic on T4 and human lysozymes. Computational Biology and Chemistry, 29, 25–35.

    Article  CAS  Google Scholar 

  25. Tanford, C. (1961). Physical chemistry of macromolecules. New York: Wiley.

    Google Scholar 

  26. Valstar, A. (2000). Ph.D. thesis, Uppsala University, Sweden.

  27. Ventura, S., & Serrano, L. (2004). Designing protein from the inside out. Proteins: Structure, Function, and Bioinformatics, 56, 1–10.

    Article  CAS  Google Scholar 

  28. Ventura, S., Vega, M. C., Lacroix, E., Angrand, I., Spagnolo, L., & Serrano, L. (2002). Conformational strain in the hydrophobic core and its implications for protein folding and design. Nature Structural Biology, 9, 485–493.

    Article  CAS  Google Scholar 

  29. Yutani, K., Ogasahara, K., Tsujita, T., & Yoshinobu, S. (1987). Dependence of conformational stability on hydrophobicity of the amino acid residue in a series of variant proteins substituted at a unique position of tryptophan synthase α subunit. Proceedings of the National Academy of Science USA, 84, 4441–4444.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the Ministry of Science, Technology and Innovation for financial support (grant no. 5487729). We would like to thank Prof. Dr. Romas Kazlauskas for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahiran Basri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahab, R.A., Basri, M., Rahman, R.N.Z.R.A. et al. Manipulation of the Conformation and Enzymatic Properties of T1 Lipase by Site-Directed Mutagenesis of the Protein Core. Appl Biochem Biotechnol 167, 612–620 (2012). https://doi.org/10.1007/s12010-012-9728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9728-2

Keywords

Navigation