Skip to main content

Advertisement

Log in

In Silico Analyses of COMT, an Important Signaling Cascade of Dopaminergic Neurotransmission Pathway, for Drug Development of Parkinson’s Disease

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Catechol-O-methyltransferase (COMT) has a vital role for degradation of dopamine, a neurotransmitter, and this dopamine performs an important function in our mental and physical health. The scarcity of dopamine may lead to Parkinson’s disease, and inhibition of COMT can stop dopamine metabolism. Here, we have carried out genomics and proteomics analyses of COMT in order to facilitate new inhibitors of COMT. For genomics analyses, we performed codon composition investigation of COMT gene which shows A+T content which is 53.3 %. For proteomics analyses, conservation patterns and residues (highly conserved amino acids GLU64, LEU65, GLY66, CYS69, GLY70, ALA77, GLU90, THR99, SER119, ASP136, LEU140, ASP141, THR164, ASN170, VAL171, and ILE172), binding grooves, binding pockets, binding and conformation with substrate, evaluation of amino acid composition (15 % leucine rich), high scoring hydrophobic segments, high scoring transmembrane segments, tandem and periodic repeats, and disulfide bonds (three numbers), sequence logos (maximum stack height of 3 b and minimum stack height of <0.5 b) have been investigated for COMT protein. Furthermore, using COMT sequences of different species (class Mammalia, class Amphibia, and class Pisces), a phylogenetic tree has been constructed to examine the evolutionary relationship among different species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dauer, W., & Przedborski, S. (2003). Neuron, 39, 889–909.

    Article  CAS  Google Scholar 

  2. Hornykiewicz, O. (1970). Rivista di Patologia Nervosa e Mentale, 91, 281–286.

    CAS  Google Scholar 

  3. Gold, B. G., & Nutt, J. G. (2002). Current Opinion in Pharmacology, 2, 82–86.

    Article  CAS  Google Scholar 

  4. Matsumoto, M., Weickert, C. S., Akil, M., Lipska, B. K., Hyde, T. M., Herman, M. M., Kleinman, J. E., & Weinberger, D. R. (2003). Neuroscience, 116, 127–137.

    Article  CAS  Google Scholar 

  5. Brooks, D. J. (2001). Journal of Neural Transmission, 108, 1283–1298.

    Article  CAS  Google Scholar 

  6. Wu, D. C., Jackson-Lewis, V., Vila, M., Tieu, K., Teismann, P., Vadseth, C., Choi, D. K., Ischiropoulos, H., & Przedborski, S. (2002). Journal of Neuroscience, 22, 1763–1771.

    CAS  Google Scholar 

  7. Olanov, C. W., Schapira, A. H., & Agid, Y. (2003). Annals of Neurology, 53, S1–S2.

    Article  Google Scholar 

  8. Serra, P. A., Esposito, G., Enrico, P., Mura, M. A., Migheli, R., et al. (2000). British Journal of Pharmacology, 130, 937–945.

    Article  CAS  Google Scholar 

  9. Werner, P., Mytilineou, C., Cohen, G., & Yahr, M. D. (1994). European Journal of Pharmacology, 263, 157–162.

    Article  CAS  Google Scholar 

  10. Nutt, J. G. (1990). Neurology, 40, 340–345.

    Article  CAS  Google Scholar 

  11. Sulzer, D., Bogulavsky, J., Larsen, K. E., Behr, G., Karatekin, E., et al. Proceedings of the National Academy of Sciences of the United States of America, 97, 1869–1874

  12. Graham, D. G. (1978). Molecular Pharmacology, 14, 633–643.

    CAS  Google Scholar 

  13. Hald, A., & Lotharius, J. (2005). Experimental Neurology, 193, 279–290.

    Article  CAS  Google Scholar 

  14. Zhou, C., Huang, Y., & Przedborski, S. (2008). Annals of the New York Academy of Sciences, 1147, 93–104.

    Article  CAS  Google Scholar 

  15. Melnikova, V. I., Lavrenteva, A. V., Kudrin, V. S., Raevskii, K. S., & Ugryumov, M. V. (2005). Neuroscience and Behavioral Physiology, 35, 809–813.

    Google Scholar 

  16. Molinoff, P. B., & Axelrod, J. (1971). Annual Review of Biochemistry, 40, 465–500.

    Article  CAS  Google Scholar 

  17. Mannisto, P. T., Ulmanen, I., Lundstrom, K., Taskinen, J., Tenhunen, J., Tilgman, C., & Kaakkola, S. (1992). Progress in Drug Research, 39, 291–348.

    CAS  Google Scholar 

  18. Westerink, B. H. C. (1985). Neurochemistry International, 7, 221–227.

    Article  CAS  Google Scholar 

  19. Bortolato, M., Chen, K., & Shih, J. C. (2008). Advanced Drug Delivery Reviews, 60, 1527–1533.

    Article  CAS  Google Scholar 

  20. Mannisto, P. T., & Kaakkola, S. (1999). Pharmacological Reviews, 51, 593–628.

    CAS  Google Scholar 

  21. Raevskii, K. S., Gainetdinov, R. R., Budygin, E. A., Mannisto, P., & Wightman, M. Neuroscience and Behavioral Physiology, 32, 183–188.

  22. Okereke, C. S. (2002). Journal of Pharmacy and Pharmaceutical Sciences, 5, 146–161.

    CAS  Google Scholar 

  23. Rinne, U. K., Larsen, J. P., Siden, A., & Worm-Petersen, J. (1998). Neurology, 51, 1309–1314.

    Article  CAS  Google Scholar 

  24. Rajput, A. H., Martin, W., Saint-Hillaire, M. H., Dorflinger, E., & Pedder, S. Neurology, 49, 1066–1071.

  25. Lees, A. J. (2008). CNS Neuroscience and Therapeutics, 14, 83–93.

    Article  CAS  Google Scholar 

  26. Muto, A., & Osawa, S. (1987). Proceedings of the National Academy of Sciences of the United States of America, 84, 166–169.

    Article  CAS  Google Scholar 

  27. Yakovchuk, P., Protozanova, E., & Frank-Kamenetskii, M. D. (2006). Nucleic Acids Research, 34, 564–574.

    Article  CAS  Google Scholar 

  28. Jermiin, L. S., Graur, D., Lowe, R. M., & Crozier, R. H. Journal of Molecular Evolution, 39, 160–173.

  29. Hashimoto, T., Nakamura, Y., Nakamura, F., Shirakura, T., Adachi, J., Goto, N., Okamoto, K., & Hasegawa, M. (1994). Molecular and Biological Evolution, 11, 65–71.

    CAS  Google Scholar 

  30. Zeeberg, B. (2002). Genome Research, 12, 944–955.

    Article  CAS  Google Scholar 

  31. Tao, X., & Dafu, D. (1998). FEBS Letters, 434, 93–96.

    Article  CAS  Google Scholar 

  32. Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., et al. (2011). Nucleic Acids Research, 39, D38–D51.

    Article  Google Scholar 

  33. Leavitt, A., Chmelnitskym, I., Carmeli, Y., & Navon-Venezia, S. Antimicrobial Agents and Chemotherapy, 54, 4493–4496

  34. Brendel, V., Bucher, P., Nourbakhsh, I., Blaisdell, B. E., & Karlin, S. (2002). Proceedings of the National Academy of Sciences of the United States of America, 89, 2002–2006.

    Article  Google Scholar 

  35. Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). Nucleic Acids Research, 33, W72–W76.

    Article  CAS  Google Scholar 

  36. Herraez, A. (2006). Biochemistry and Molecular Biology Education, 34, 255–261.

    Article  CAS  Google Scholar 

  37. Hanson, R. M. (2010). Journal of Applied Crystallography, 43, 1250–1260.

    Article  CAS  Google Scholar 

  38. DeLano, W. L. (2002). The PyMOL molecular graphics System.

  39. Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). Nucleic Acids Research, 38, W529–W533.

    Article  CAS  Google Scholar 

  40. Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., & Ben-Tal, N. (2003). Bioinformatics, 19, 163–164.

    Article  CAS  Google Scholar 

  41. Tseng, Y. Y., Chen, Z. J., & Li, W. H. (2010). Nucleic Acids Research, 38, D288–D295.

    Article  CAS  Google Scholar 

  42. Smith, T. F., & Waterman, M. S. (1981). Journal of Molecular Biology, 147, 195–197.

    Article  CAS  Google Scholar 

  43. Tseng, Y. Y., Dupree, C., Chen, Z. J., & Li, W. H. (2009). Nucleic Acids Research, 37, W384–W389.

    Article  CAS  Google Scholar 

  44. Schneider, T. D. & Stephens, R. M. Nucleic Acids Res, 18, 6097–6100.

  45. Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). Genome Research, 14, 1188–1190.

    Article  CAS  Google Scholar 

  46. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., & Claverie, J. M. (2008). Nucleic Acids Research, 36, W465–W469.

    Article  CAS  Google Scholar 

  47. Axelrod, J., Senoh, S., & Witkop, B. (1958). O-methylation of catechol amines in vivo. Journal of Biological Chemistry, 233, 697–701.

    CAS  Google Scholar 

  48. Axelrod, J., & Tomchick, R. (1958). Journal of Biological Chemistry, 233, 702–705.

    CAS  Google Scholar 

  49. Guldberg, H. C., & Marsden, C. A. (1975). Pharmacological Reviews, 27, 135–206.

    CAS  Google Scholar 

  50. Mannisto, P. T., & Kaakkola, S. (1989). Trends in Pharmacological Sciences, 10, 54–56.

    Article  CAS  Google Scholar 

  51. Mannisto, P. T., & Kaakkola, S. (1990). Pharmacology and Toxicology, 66, 317–323.

    Article  CAS  Google Scholar 

  52. Dingemanse, J. (1997). Drug Development Research, 42, 1–25.

    Article  CAS  Google Scholar 

  53. Purushotham, D., Ganguly, C., & Chakraborty, C. (2011). Letters in Drug Design & Discovery, 8, 246–252.

    Article  CAS  Google Scholar 

  54. Grossman, M. H., Emanuel, B. S., & Budarf, M. L. (1992). Genomics, 12, 822–825.

    Article  CAS  Google Scholar 

  55. Winqvist, R., Lundstrom, K., Salminen, M., Laatikainen, M., & Ulmanen, I. (1992). Cytogenetics and Cell Genetics, 59, 253–257.

    Article  CAS  Google Scholar 

  56. Salminen, M., Lundstrom, K., Tilgmann, C., Savolainen, R., Kalkkinen, N., & Ulmanen, I. (1990). Gene, 93, 241–247.

    Article  CAS  Google Scholar 

  57. Lundstrom, K., Salminen, M., Jalanko, A., Savolainen, R., & Ulmanen, I. (1991). DNA and Cell Biology, 10, 181–189.

    Article  CAS  Google Scholar 

  58. Rutherford, K., Le Trong, I., Stenkamp, R. E., & Parson, W. W. (2008). Journal of Molecular Biology, 380, 120–130.

    Article  CAS  Google Scholar 

  59. Malherbe, P., Bertocci, B., Caspers, P., Zurcher, G., & Da Prada, M. (1992). Journal of Neurochemistry, 58, 1782–1789.

    Article  CAS  Google Scholar 

  60. Vidgren, J., Ovaska, M., Tenhunen, J., Tilgmann, C., Lotta, T., & Mannisto, P. T. (1999). In X. Cheng & R. M. Blumenthal (Eds.), Structure and function of AdoMet-dependent methyltransferases (pp. 55–91). Singapore: World Scientific.

    Chapter  Google Scholar 

  61. Vidgren, J., Svensson, L. A., & Liljas, A. (1994). Nature, 368, 354–358.

    Article  CAS  Google Scholar 

  62. Vidgren, J., Tilgmann, C., Lundstrom, K., & Liljas, A. (1991). Proteins: Structure, Function, and Genetics, 11, 233–236.

    Article  CAS  Google Scholar 

  63. Vidgren, J., & Ovaska, M. (1997). In P. Veerapandian (Ed.), Structure-based drug design (pp. 343–363). New York: Marcel Dekker, Inc.

    Google Scholar 

  64. Deo, N. (1974). Prentice Hall Series in Automatic Computation.

  65. Mittal, R., Jain, B. N., & Patney, R. K. (1994). Microelectronics Reliability, 34, 1301–1310.

    Article  Google Scholar 

  66. Chakraborty, C., Agoramoorthy, G., & Hsu, M. J. (2011). PLoS One, 6, e16580.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjib Chakraborty.

Additional information

Chiranjib Chakraborty and Soumen Pal equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, C., Pal, S., Doss, C.G.P. et al. In Silico Analyses of COMT, an Important Signaling Cascade of Dopaminergic Neurotransmission Pathway, for Drug Development of Parkinson’s Disease. Appl Biochem Biotechnol 167, 845–860 (2012). https://doi.org/10.1007/s12010-012-9725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9725-5

Keywords

Navigation