Skip to main content
Log in

Investigation of Factors Affecting Controlled Release from Photosensitive DMPC and DSPC Liposomes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An investigation of liposomes comprised of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids with cholesterol and zinc phthalocyanine (ZnPC) revealed that several fundamental liposome properties are influenced by composition and by lipid-specific features. DMPC and DSPC liposomes were synthesized, and their compositional changes, encapsulation capacities, morphologies, and release properties were evaluated. In this research, liposome degradation, lysis, and content release were initiated by photolysis, i.e., rupture induced by exposure to light. A controlled release mechanism was created through the introduction of photosensitizers (i.e., ZnPC) embedded within the cholesterol-stabilized liposome membrane. The light wavelength and light exposure time accelerated photodegradation properties of DMPC liposomes compared to DSPC liposomes, which exhibited a slower release rate. Morphological changes in the liposomes were strongly influenced by light wavelength and light exposure time. For both the DMPC and DSPC liposomes, visible light with wavelengths in the red end of the spectrum and broad spectrum ambient lighting (400–700 nm) were more effective for lysis than UV-A light (365 nm). Heating liposomes to 100 °C decreased the stability of liposomes compared to liposomes kept at room temperatures. In addition, the optimal lipid-to-cholesterol-to-photoactivator ratio that produced the most stable liposomes was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ozato, K., Ziegler, H., & Henney, C. (1978). Journal of Immunology, 121, 1376–1382.

    CAS  Google Scholar 

  2. Sessa, G., & Weissman, G. (1970). Journal of Biological Chemistry, 245, 3295–3301.

    CAS  Google Scholar 

  3. Chaize, B., Colletier, J. P., Winterhalter, M., & Fournier, D. (2004). Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 32, 67–75.

    Article  CAS  Google Scholar 

  4. Schreier, H., & Bouwstra, J. (1994). Journal of Controlled Release, 30, 1–15.

    Article  CAS  Google Scholar 

  5. Bangham, A. D., & Horne, R. W. (1964). Journal of Molecular Biology, 8, 660–668.

    Article  CAS  Google Scholar 

  6. Wichelecki, D. J., McNew, T. M., Aygun, A., Torrey, K., & Stephenson, L. D. (2011). Applied Biochemistry and Biotechnology, 165(2), 548–558.

    Article  CAS  Google Scholar 

  7. Jeong, J. M., Chung, Y. C., & Hwang, J. H. (2002). Journal of Biotechnology, 94, 255–263.

    Article  CAS  Google Scholar 

  8. Wan, Y., Angleson, J. K., & Kutateladze, A. G. (2002). Journal of the American Chemical Society, 124, 5610–5611.

    Article  CAS  Google Scholar 

  9. Cheong, I., Huang, X., Bettegowda, C., Diaz, L. A., Jr., Kinzler, K. W., Zhou, S., et al. (2006). Science, 314, 1308–1311.

    Article  CAS  Google Scholar 

  10. Bisby, R. H., Mead, C., & Morgan, C. G. (1999). FEBS Letters, 463, 165–168.

    Article  CAS  Google Scholar 

  11. Anderson, V. C., & Thompson, D. H. (1992). Biochimica et Biophysica Acta, 1109, 33–42.

    Article  CAS  Google Scholar 

  12. Mohammed, A. R., Weston, N., Coombes, A. G. A., Fitzgerald, M., & Perrie, Y. (2004). International Journal of Pharmaceutics, 285(1–2), 23–34.

    Article  CAS  Google Scholar 

  13. Sulkowski, W. W., Pentak, D., Novak, K., & Sulkowska, A. (2005). J. of Molecular Structure, 744–747, 737–747.

    Article  Google Scholar 

  14. Epand, R. M., Epand, R. F., & Maekawa, S. (2003). Chemistry and Physics of Lipids, 122, 33–39.

    Article  CAS  Google Scholar 

  15. Nunes, S. M. T., Sguilla, F. S., & Tedesco, A. C. (2004). Brazilian Journal of Medical and Biological Research, 37, 273–284.

    Article  CAS  Google Scholar 

  16. Switzer, R., & Garrity, L. (1999). Experimental biochemistry: theory and exercises in fundamental methods (pp. 123–134). New York: Freeman and Company.

    Google Scholar 

  17. Yousefi, A., Esmaeili, F., Rahimian, S., Atyabi, F., & Dinarvand, R. (2009). Scientia Pharmaceutica, 77, 453–464.

    Article  CAS  Google Scholar 

  18. Hubert, D. H. W., Jung, M., Frederik, P. M., Bomans, P. H. H., Meuldijk, J., & German, A. L. (2000). Advanced Materials, 12, 1286–1290.

    Article  CAS  Google Scholar 

  19. Gregoriadis, G., & Davis, C. (1979). Biochemical and Biophysical Research Communications, 89, 1287–1293.

    Article  CAS  Google Scholar 

  20. Senior, J., & Gregoriadis, G. (1982). FEBS Letters, 145, 109–114.

    Article  CAS  Google Scholar 

  21. Anderson, S. M., & Krinsky, N. I. (1973). Photochemistry and Photobiology, 18, 403–408.

    Article  CAS  Google Scholar 

  22. Hupfeld, S., Holsæter, A. M., Skar, M., Frantzen, C. B., & Brandl, M. (2006). Journal of Nanoscience and Nanotechnology, 6, 1–7.

    Article  Google Scholar 

  23. Benkhoff, J., Dietliker, K., Powell, K., Jung, T., Studer, K., & Sitzmann, E. V. (2007). JCT Coatings Technology, 4, 40–46.

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the US Army Corps of Engineer (USACE). This work was all done at Engineer Research and Development Center—Construction Engineering Research Laboratory (ERDC-CERL) and was funded by USACE 6.1 funds. The authors would also like to thank Ms. B. Mehnert for aid in editing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysegul Aygun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aygun, A., Torrey, K., Kumar, A. et al. Investigation of Factors Affecting Controlled Release from Photosensitive DMPC and DSPC Liposomes. Appl Biochem Biotechnol 167, 743–757 (2012). https://doi.org/10.1007/s12010-012-9724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9724-6

Keywords

Navigation