Skip to main content
Log in

A Rapid and Simple Method for Preparing an Insoluble Substrate for Screening of Microbial Xylanase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Several types of enzymes, including cellulases and xylanases, are required to degrade hemicelluloses and cellulose, which are major components of lignocellulosic biomass. Such degradative processes can be used to produce various useful industrial biomaterials. Screening methods for detecting polysaccharide-degrading microorganisms include the use of dye-labeled substrates in growth medium and culture plate staining techniques. However, the preparation of screening plates, which typically involves chemical cross-linking to synthesize a dye-labeled substrate, is a complicated and time-consuming process. Moreover, such commercial substrates are very expensive, costing tenfold more than the natural xylan. Staining methods are also problematic because they may damage relevant microorganisms and are associated with contamination of colonies of desirable organisms with adjacent unwanted bacteria. In the present study, we describe a sonication method for the simple and rapid preparation of an insoluble substrate that can be used to screen for xylanase-expressing bacteria in microbial populations. Using this new method, we have successfully isolated a novel xylanase gene from a xylolytic microorganism termed Xyl02-KBRB and Xyl14-KBRB in the bovine rumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lai, Y. Z. (1995). Chemical modification of lignocellulosic materials (pp. 35–96). Boca Raton: CRC.

    Google Scholar 

  2. Ebringerova, A., & Heinze, T. (2000). Macromolecular Rapid Communications, 21, 542–556.

    Article  CAS  Google Scholar 

  3. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  4. Tjalsma, H., Antelmann, H., Jongbloed, J. D. H., Braun, P. G., Darmon, E., Dorenbos, R., et al. (2004). Microbiology and Molecular Biology Reviews, 68, 207–233.

    Article  CAS  Google Scholar 

  5. Bernier, R., Driguez, H., & Desrochers, M. (1983). Gene, 26, 59–65.

    Article  CAS  Google Scholar 

  6. St John, F. J., Rice, J. D., & Preston, J. F. (2006). Journal of Bacteriology, 88, 8617–8626.

    Article  Google Scholar 

  7. Bourgois, T. M., Craeyveld, V. V., Campenhout, S. V., Courtin, C. M., Delcour, J. A., Robben, J., et al. (2007). Applied Microbiology and Biotechnology, 75, 1309–1317.

    Article  CAS  Google Scholar 

  8. Fülöp, L., & Ponyi, T. (1997). Journal of Microbiological Methods, 29, 15–21.

    Article  Google Scholar 

  9. Lee, S. T., & Lee, J. J. (1997). Journal of Microbiological Methods, 29, 1–5.

    Article  Google Scholar 

  10. Béguin, P. (1983). Analytical Biochemistry, 131, 333–336.

    Article  Google Scholar 

  11. Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). Current Microbiology, 57, 503–507.

    Article  CAS  Google Scholar 

  12. Teather, R. M., & Wood, P. J. (1982). Applied and Environmental Microbiology, 43, 777–780.

    CAS  Google Scholar 

  13. Biely, P., Mislovic, D., & Toman, R. (1985). Analytical Biochemistry, 144, 142–146.

    Article  CAS  Google Scholar 

  14. Sambrook, J., Brent, R., Kingston, T. (1987) Greene Publishing Associates and Wiley-Interscience, New York.

  15. Lane, D. J. (1991). Nucleic acid techniques in bacterial systematics (pp. 115–148). New York: Wiley.

    Google Scholar 

  16. Fleishmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., et al. (1995). Science, 269, 496–512.

    Article  Google Scholar 

  17. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acids Research, 25, 3389–402.

    Article  CAS  Google Scholar 

  18. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr., Saxman, P. R., Stredwick, J. M., et al. (2000). Nucleic Acids Research, 29, 173–174.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a HTS-based Integrated Technology Development grant (2008-04171) and by Basic Science Research Program (2010-0015993) from the Ministry of Education, Science and Technology through the National Research Foundation of Korea, by the New & Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy, and a basic research grant from the Korea Research Institute of Bioscience and Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Hyun Choi or Jae Jun Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, KC., Han, Y., Shin, B.S. et al. A Rapid and Simple Method for Preparing an Insoluble Substrate for Screening of Microbial Xylanase. Appl Biochem Biotechnol 167, 677–684 (2012). https://doi.org/10.1007/s12010-012-9722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9722-8

Keywords

Navigation