Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 4, pp 909–917 | Cite as

Effect of Microaerobic Fermentation in Preprocessing Fibrous Lignocellulosic Materials

  • Manar Arica Alattar
  • Terrence R. Green
  • Jordan Henry
  • Vitalie Gulca
  • Mikias Tizazu
  • Robby Bergstrom
  • Radu Popa
Article

Abstract

Amending soil with organic matter is common in agricultural and logging practices. Such amendments have benefits to soil fertility and crop yields. These benefits may be increased if material is preprocessed before introduction into soil. We analyzed the efficiency of microaerobic fermentation (MF), also referred to as Bokashi, in preprocessing fibrous lignocellulosic (FLC) organic materials using varying produce amendments and leachate treatments. Adding produce amendments increased leachate production and fermentation rates and decreased the biological oxygen demand of the leachate. Continuously draining leachate without returning it to the fermentors led to acidification and decreased concentrations of polysaccharides (PS) in leachates. PS fragmentation and the production of soluble metabolites and gases stabilized in fermentors in about 2–4 weeks. About 2 % of the carbon content was lost as CO2. PS degradation rates, upon introduction of processed materials into soil, were similar to unfermented FLC. Our results indicate that MF is insufficient for adequate preprocessing of FLC material.

Keywords

Lignocellulose Microaerobic fermentation Bokashi Polysaccharides Carbon recycling Soil fertilizers 

Notes

Acknowledgments

This work was supported by a sustainability initiative grant from the Miller Foundation at PSU, by a grant from the Graduate School at PSU and by Bokashicycle LLC.

References

  1. 1.
    Butterly, C. R., Kaudal, B. B., Baldock, J. A., & Tang, C. (2011). European Journal of Soil Science, 62, 718–727.CrossRefGoogle Scholar
  2. 2.
    Campiglia, E., Mancinelli, R., & Radicetti, E. (2011). Scientia Horticulturae, 130, 588–598.CrossRefGoogle Scholar
  3. 3.
    Hoyle, F. C., & Murphy, D. V. (2011). Plant and Soil, 347, 53–64.CrossRefGoogle Scholar
  4. 4.
    Kumar, V., Brainard, D. C., Bellinder, R. R., & Hahn, R. R. (2011). Weed Science, 59, 567–573.CrossRefGoogle Scholar
  5. 5.
    Albers, D., Schaefer, M., & Scheu, S. (2006). Ecology, 87, 235–245.CrossRefGoogle Scholar
  6. 6.
    Hubbe, M. A., Nazhad, M., & Sanchez, C. (2010). Bioresources, 5, 2808–2854.Google Scholar
  7. 7.
    Zanon, M. J., Font, M. I., & Jorda, C. (2011). Crop Protection, 30, 1138–1143.CrossRefGoogle Scholar
  8. 8.
    Tyree, M. C., Seiler, J. R., & Maier, C. A. (2011). Forest Ecology and Management, 262, 1473–1482.CrossRefGoogle Scholar
  9. 9.
    Lee, C., Erickson, P., Lazarus, M. & Smith, G. (2010) Greenhouse gas and air pollutant emissions of alternatives for woody biomass residues. Seattle: Stockholm Environment Institute.Google Scholar
  10. 10.
    Blanco-Canqui, H., & Lal, R. (2004). Critical Reviews in Plant Sciences, 23, 481–504.CrossRefGoogle Scholar
  11. 11.
    USDA. (2011). USDA-NRCS Energy consumption awareness tool: Tillage.Google Scholar
  12. 12.
    Nishio, M. (1996). Microbial fertilizers in Japan, FFTC-Extension Bulletins 1–12. Ibaraki: National Institute of Agro-Environmental Sciences.Google Scholar
  13. 13.
    Perez, A., Cespedes, C., & Nunez, P. (2008). Revista de la Ciencia del Suelo y Nutricion Vegetal, 8, 10–29.Google Scholar
  14. 14.
    Rezende, A. M. F. A., Tomita, C. K., & Uesugi, C. H. (2008). Tropical Plant Pathology, 33, 288–294.CrossRefGoogle Scholar
  15. 15.
    Green, T., & Popa, R. (2011). Applied Biochemistry and Biotechnology, 163, 519–527.CrossRefGoogle Scholar
  16. 16.
    Yan, P. S., & Xu, H. L. (2002). Journal of Sustainable Agriculture, 19, 105–112.CrossRefGoogle Scholar
  17. 17.
    Hussain, T., Jilani, T. & Tahir, S.H. (1995) In Fourth International Conference on Kyusei Nature Farming: Nature farming with EM technology for sustainable crops production in Pakistan (pp. 71–78), France.Google Scholar
  18. 18.
    Mayer, J., Scheid, S., Widmer, F., Fliessbach, A., & Oberholzer, H. R. (2010). Applied Soil Ecology, 46, 230–239.CrossRefGoogle Scholar
  19. 19.
    Maso, M. A., & Blasi, A. B. (2008). Bioresource Technology, 99, 5120–5124.CrossRefGoogle Scholar
  20. 20.
    Bhattarai, S., Bhudhathoki, K. & Sherchan, D.P. (2006) In National Workshop on Organic Farming: Organic farming, its role in soil fertility, effect on crop production, constraints and future strategy (pp. 131–137), Kirtipur, Kathmandu, Nepal.Google Scholar
  21. 21.
    Safarik, I., & Santruckova, H. (1992). Plant and Soil, 143, 109–114.CrossRefGoogle Scholar
  22. 22.
    DuBois, M., Giles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  23. 23.
    Green, T., & Popa, R. (2010). Journal of Polymers and the Environment, 18, 634–637.CrossRefGoogle Scholar
  24. 24.
    Green, G. (1982). Soil survey of Washington County, Oregon. Washington: US Departmentt of Agriculture Soil Conservation Service.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Manar Arica Alattar
    • 1
  • Terrence R. Green
    • 2
  • Jordan Henry
    • 1
  • Vitalie Gulca
    • 3
  • Mikias Tizazu
    • 1
  • Robby Bergstrom
    • 1
  • Radu Popa
    • 1
  1. 1.Biology DepartmentPortland State UniversityPortlandUSA
  2. 2.TGA LLCLake OswegoUSA
  3. 3.State Agricultural UniversityChișinăuMoldova

Personalised recommendations