Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 5, pp 1069–1075 | Cite as

Graphene-Based Waveguides: Novel Method for Detecting Biological Activity

  • Jangah Kim
  • Manasi Kasture
  • Taihyun Hwang
  • Atul Kulkarni
  • Rashid Amin
  • Sungha Park
  • Taesung KimEmail author
  • Suresh GosaviEmail author
Article

Abstract

We demonstrate the fabrication of a biosensor based on graphene coupled with polydimethylsiloxane (PDMS) waveguide. Biosensors work on the principle of local evanescent graphene-coupled wave sensor. It is observed that the evanescent field shifts in the presence of chemical or biological species as evanescent waves are extremely sensitive to a change in refractive index. This method helps to monitor the target analyte by attaching the selective receptor molecules to the surface of the PDMS optical waveguide resulting in its optical intensity distribution shift. We monitor the electrical properties of graphene in the dark and under illumination of PDMS waveguide. The changes in photocurrent through the graphene film were monitored for blue, green, and red light. We observed that the fabricated graphene-coupled PDMS optical waveguide sensor is sensitive to visible light for the used bioanalytes.

Keywords

Waveguide Graphene PDMS Local evanescent wave Biosensor 

Notes

Acknowledgements

This work was partly supported by the GRRC program of Gyeonggi province [S-2011-1039-007-1, Development of integrated sensor Technology (2009-0083540)] and Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2009-0083540).

References

  1. 1.
    Turner, A. P. F. (2000). Science, 290, 1315–1317.CrossRefGoogle Scholar
  2. 2.
    Bartlett, P. N., Tebbutt, P., & Whitaker, R. C. (1991). Progress in Reaction Kinetics, 16, 55.Google Scholar
  3. 3.
    Ianniello, R. M., Lindsay, T. J., & Yacynych, A. M. (1980). Analytical Chemistry, 1982, 54.Google Scholar
  4. 4.
    Ghindilis, A. L., & Kurochkin, I. N. (1994). Biosensors and Bioelectronics, 9, 353.CrossRefGoogle Scholar
  5. 5.
    Lion-Dagan, M., Ben-Dov, I., & Willner, I. (1997). Colloids and Surfaces B, 8, 251.CrossRefGoogle Scholar
  6. 6.
    Ben-Dov, I., Willner, I., & Zisman, E. (1997). Analytical Chemistry, 69, 3506.CrossRefGoogle Scholar
  7. 7.
    Bardea, A., Dagan, A., Ben-Dov, I., Amit, B., & Willner,I. (1998). Chemical Communications, 839.Google Scholar
  8. 8.
    O’Sullivan, C. K., Vaughan, R., & Guilbault, G. G. (1999). Analytical Letters, 32, 2353.CrossRefGoogle Scholar
  9. 9.
    Kazanskaya, N., Kukhtin, A., Manenkova, M., Reshetilov, A. N., Yarysheva, L., Arzhakova, O., et al. (1996). Biosensors and Bioelectronics, 11, 253.CrossRefGoogle Scholar
  10. 10.
    Zayats, M., Kharitonov, A. B., Katz, E., Bückmann, A. F., & Willner, I. (2000). Biosensors and Bioelectronics, 15, 671.CrossRefGoogle Scholar
  11. 11.
    Pardo-Yissar, V., Katz, E., Wasserman, J., & Willner, I. (2003). Journal of the American Chemical Society, 125, 622.CrossRefGoogle Scholar
  12. 12.
    Amador, S. M., Pachence, J. M., Fischetti, R., McCauley, J. P., Jr., Smith, A. B., & Blasic, J. K. (1993). Langmuir, 9, 812.CrossRefGoogle Scholar
  13. 13.
    Hobara, D., Niki, K., Zhou, C., Chumanov, G., & Cotton, T. M. (1994). Colloids and Surfaces A, 93, 241.CrossRefGoogle Scholar
  14. 14.
    Liedberg, B., Nylander, C., & Lundström, I. (1995). Biosensors and Bioelectronics, 10, i.Google Scholar
  15. 15.
    Jordan, C. E., & Corn, R. M. (1997). Analytical Chemistry, 69, 1449.CrossRefGoogle Scholar
  16. 16.
    Raitman, O. A., Katz, E., Bückmann, A. F., & Willner, I. (2002). Journal of the American Chemical Society, 124, 6487.CrossRefGoogle Scholar
  17. 17.
    Raitman, O. A., Patolsky, F., Katz, E., & Willner, I. (1936). Chemical Communications, 2002.Google Scholar
  18. 18.
    Mak, K. F., et al. (2008). Physical Review Letters, 101, 196405.CrossRefGoogle Scholar
  19. 19.
    Xia, F., Mueller, T., & Lin, Y. (2009). Nature Nanotechnology, 4, 839–843.CrossRefGoogle Scholar
  20. 20.
    Rogalski, A., Antoszewski, J., & Faraone, L. (2009). Journal of Applied Physics, 105, 091101.CrossRefGoogle Scholar
  21. 21.
    Guo, S.-R., Lin, J., Penchev, M., Yengel, E., Ghazinejad, M., Ozkan, C. S., et al. (2011). Journal of Nanoscience and Nanotechnology, 11(6), 5258–5263.CrossRefGoogle Scholar
  22. 22.
    Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S. E., Sim, S. H., et al. (2010). Nano Letters, 10, 490.CrossRefGoogle Scholar
  23. 23.
    Seeman, N. C. (1990). Journal of Biomolecular Structure and Dynamics, 8, 573.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jangah Kim
    • 1
  • Manasi Kasture
    • 2
  • Taihyun Hwang
    • 3
  • Atul Kulkarni
    • 3
    • 4
  • Rashid Amin
    • 1
  • Sungha Park
    • 1
    • 4
  • Taesung Kim
    • 1
    • 3
    Email author
  • Suresh Gosavi
    • 2
    Email author
  1. 1.Sungkyunkwan Advanced Institute of Technology (SAINT)Sungkyunkwan UniversitySuwonSouth Korea
  2. 2.Department of PhysicsUniversity of PunePuneIndia
  3. 3.School of Mechanical EngineeringSungkyunkwan UniversitySuwonSouth Korea
  4. 4.Department of PhysicsSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations