Skip to main content
Log in

Effect of Gold Nanosphere Surface Chemistry on Protein Adsorption and Cell Uptake In Vitro

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Gold nanoparticles exhibit unique spectral properties that make them ideal for biosensing, imaging, drug delivery, and other therapeutic applications. Interaction of gold nanoparticles within biological environments is dependent on surface characteristics, which may rely on particular capping agents. In this study, gold nanospheres (GNS) synthesized with different capping agents—specifically citric acid (CA) and tannic acid (TA)—were compared for serum protein adsorption and cellular uptake into a lung epithelial cell line (A549). Both GNS samples exhibited noticeable protein adsorption based on surface charge data after exposure to serum proteins. Light scattering measurements revealed that GNS-CA-protein composites were smaller and less dense compared to GNS-TA-protein composites. The cell uptake characteristics of these nanoparticles were also different. GNS-CA formed large clusters and elicited high uptake, while GNS-TA were taken up as discrete particles, possibly through nonendosomal mechanisms. These results indicate that the capping agents used for GNS synthesis result in unique biological interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agarwal, A., Huang, S. W., O'Donnel, M., et al. (2007). Journal of Applied Physics, 102, 064701.

    Article  Google Scholar 

  2. El-Sayed, I. H., Huang, X., & El-Sayed, M. A. (2005). Nano Letters, 5, 829.

    Article  CAS  Google Scholar 

  3. Quian, X., Peng, X. H., Ansari, D. O., et al. (2008). Nature Biotechnology, 26, 83.

    Article  Google Scholar 

  4. Lukianova-Hleb, E. Y., Oginsky, A. O., Shenefelt, D. L., et al. (2011). Journal of Nanomedicine and Nanotechnology, 2, 1000104.

    CAS  Google Scholar 

  5. Wang, X., Quian, X., Beitler, J. J., et al. (2011). Cancer Research, 71, 1526.

    Article  CAS  Google Scholar 

  6. Tuncagil, S., Ozdemir, C., Demirkol, D. O., et al. (2011). Food Chemistry, 127, 1317.

    Article  CAS  Google Scholar 

  7. Sanvicens, N., Mannelli, I., Salvador, J. P., et al. (2011). Trends in Analytical Chemistry, 30, 541.

    Article  CAS  Google Scholar 

  8. Hao, R. Z., Song, H. B., Zuo, G. M., et al. (2011). Biosensors and Bioelectronics, 26, 3398.

    Article  CAS  Google Scholar 

  9. Han, G., Ghosh, P., De, M., & Rotello, V. M. (2007). Nanobiotechnology, 3, 40.

    Article  CAS  Google Scholar 

  10. Stobiecka, M., & Hepel, M. (2011). Biomaterials, 32, 3312.

    Article  CAS  Google Scholar 

  11. Venkatpurwar, V., Shiras, A., & Pokharkar, V. (2011). International Journal of Pharmaceutics, 314–320, 409.

  12. Lynch, I., Cedervall, T., Lundqvist, M., et al. (2007). Advances in Colloid Interfaces, 134–135, 167.

    Article  Google Scholar 

  13. Cedervall, T., Lynch, I., Lindman, S., et al. (2050). Proceedings of the National Academy of Science, 2007, 104.

    Google Scholar 

  14. Nel, A. E., Madler, L., Velegol, D., et al. (2009). Nature Materials, 8, 543.

    Article  CAS  Google Scholar 

  15. Alkilany, A. M., & Murphy, C. J. (2010). Journal of Nanoparticle Research, 12, 2313.

    Article  CAS  Google Scholar 

  16. Yuan, J., Guo, Q. Q., He, X. Z., & Liu, Y. P. (2011). Advances in Materials Research, 194–196, 462.

    Article  Google Scholar 

  17. Neal, H. C., Stolnik, S., Schacht, E., Keawy, E. R., Garnett, M. C., Davis, S. S., & Illum, L. J. (1998). Pharmaceutical Sciences, 87, 1242.

    Article  CAS  Google Scholar 

  18. Ehrenberg, M. S., Friedman, A. E., Finkelstein, J. N., et al. (2009). Biomaterials, 30, 603.

    Article  CAS  Google Scholar 

  19. Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Nano Letters, 6, 662.

    Article  CAS  Google Scholar 

  20. Brewer, S. H., Glomm, W. H., Johnson, M. C., et al. (2005). Langmuir, 21, 9303.

    Article  CAS  Google Scholar 

  21. Shang, L., Wang, Y., Jiang, J., & Dong, S. (2007). Langmuir, 23, 2714.

    Article  CAS  Google Scholar 

  22. Kaufman, E. D., Belyea, J., Johnson, M. C., et al. (2007). Langmuir, 23, 6053.

    Article  CAS  Google Scholar 

  23. Chaudhuri, A., Battaglia, G., & Golestanian, R. (2011). Physical Biology, 8, 046002.

    Article  Google Scholar 

  24. Lee, O. S., Schatz, G. C., & Hurst, S. J. (2011). Biomedical nanotechnology: methods and protocols (Vol. 726, p. 283). New York: Springer.

    Book  Google Scholar 

  25. Jiang, W., Kim, B. Y. S., Rutka, J. T., & Chan, W. C. W. (2008). Nature Nanotechnology, 3, 145.

    Article  CAS  Google Scholar 

  26. Heister, E., Neves, V., Silva, S. R. P., et al. (2011). In R. Klingeler & R. B. Sim (Eds.), Carbon nanotubes for biomedical applications (p. 223). Heidelberg: Springer.

    Chapter  Google Scholar 

  27. Chèvre, R., Bihan, O. L., Beilvert, F., et al. (2011). Nucleic Acids Research, 39, 1610.

    Article  Google Scholar 

  28. Liu, B. R., Huang, Y. W., Winiarz, J. G., et al. (2011). Biomaterials, 32, 3520.

    Article  CAS  Google Scholar 

  29. Febvay, S., Marini, D. M., Belcher, A. M., & Clapham, D. E. (2010). Nano Letters, 10, 2211.

    Article  CAS  Google Scholar 

  30. Pittella, F., Zhang, M., Lee, Y., et al. (2011). Biomaterials, 32, 3106.

    Article  CAS  Google Scholar 

  31. Nakase, I., Kogure, K., & Harashima, H. (2011). In S. Futaki & U. Langel (Eds.), Cell-penetrating peptides: methods and protocols. New York: Springer, 683, 525.

    Google Scholar 

  32. Tkachenko, A. G., Xie, H., Coleman, D., et al. (2003). Journal of the American Chemical Society, 125, 4700.

    Article  CAS  Google Scholar 

  33. de la Fuente, J. M., & Berry, C. C. (2005). Bioconjugate Chemistry, 16, 1176.

    Article  Google Scholar 

  34. Murdock, R. C., Braydich-Stolle, L., Schrand, A. A., et al. (2008). Toxicological Sciences, 101, 239.

    Article  CAS  Google Scholar 

  35. Raper, J. A., & Amal, R. (1993). Particle and Particle Systems Characterization, 10, 239.

    Article  CAS  Google Scholar 

  36. Lui, J., Shih, W. Y., Sarikaya, M., & Aksay, I. A. (1990). Physical Review A, 41, 3206.

    Article  Google Scholar 

  37. Saleh, N. B., Pfefferle, L. D., & Elimelech, M. (2010) Influence of Biomacromolecules and Humic Acid on the Aggregation Kinetics of Single-Walled Carbon Nanotubes. Environmental Science & Technology, 44, 2412–2418.

    Google Scholar 

  38. Taylor, U., Klein, S., Petersen, S., et al. (2010). Cytometry Part A, 77A, 439.

    CAS  Google Scholar 

  39. Aelenei, N., Popa, M. I., Novac, O., et al. (2009). Journal of Materials Science, 20, 1095.

    CAS  Google Scholar 

  40. Chung, K. T., Wong, T. Y., Wei, C. I., et al. (1998). Critical Reviews in Food Science and Nutrition, 38, 421.

    Article  CAS  Google Scholar 

  41. Goodman, C. M., McCusker, C. D., Yilmaz, T., & Rotello, V. M. (2004). Bioconjugate Chemistry, 15, 897.

    Article  CAS  Google Scholar 

  42. Arnida, Malugin, A., & Ghandehari, H. (2010). Journal of Applied Toxicology, 30, 212.

    CAS  Google Scholar 

  43. Wang, S., Lu, W., Tovmachenko, O., et al. (2008). Chemical Physics Letters, 463, 145.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ms. Mukhopadhyay was supported through the Wright Scholar program. This research was supported in part by an appointment to the Postgraduate Research Participation Program at the US Air Force Research Laboratory administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and USAFRL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber Hussain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC. 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, A., Grabinski, C., Afrooz, A.R.M.N. et al. Effect of Gold Nanosphere Surface Chemistry on Protein Adsorption and Cell Uptake In Vitro. Appl Biochem Biotechnol 167, 327–337 (2012). https://doi.org/10.1007/s12010-012-9666-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9666-z

Keywords

Navigation