Skip to main content
Log in

Binding and Encapsulation of Doxorubicin on Smart Pectin Hydrogels for Oral Delivery

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pectins (Pec) of 33 to 74 % esterification degree were tested with doxorubicin (Dox), a very high toxic drug widely used in cancer therapies. Pec with 35 and 55 % DE were selected because of the Dox binding higher than Pec microspheres of 35 and 55 % obtained by ionotropic gelation with Ca+2 have 88 and 66 % Dox loading capacity. Kinetic Dox release showed more than 80.0 and about 30.0 % free drug from 35 % and 55 % Pec formulations at pH 7.4, and 37 °C after 1-h incubation, respectively. Besides, Dox release decrease to 12 % in 55 % Pec microsphere formulation after 1-year storage at 4 °C. FTIR analysis of Pec–Dox complex showed hipsochromic shifts for the σC=O, δN-H and σC-C vibrational modes compared to Dox spectrum suggesting strong interaction between the drug cargo and the matrix. Rheological studies of Pec and Pec–Dox samples flow behavior exhibited a shear-thinning nature. Fifty-five percent of Pec showed higher viscosity than the viscosity for 35 % Pec in all range of temperatures analyzed, and decreased when the temperature is raised. Besides, Pec–Dox complexes have higher viscosity values than those of the corresponding Pec samples, and viscosity curves as function of shear rate for 35 % Pec–Dox are above the curves of 55 % Pec–Dox. In both cases, the results are confirming significant interaction between the cargo and the matrix, which also was established in viscoelastic dynamic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Williams, D. F. (2009). Biomaterials, 30, 5897–5909.

    Article  CAS  Google Scholar 

  2. Liu, Z., Jiao, Y., Wang, Y., Ziyong, C., & Zhang, D. (2008). Advanced Drug Reviews, 60, 1650–1662.

    Article  CAS  Google Scholar 

  3. Dornish, M., Kaplan, D., & Skaugrud, O. (2001). Annual New York Academy of Sciences, 944, 388–397.

    Article  CAS  Google Scholar 

  4. Chi, H., Moturi, V., & Lee, Y. (2009). Journal of Controlled Release, 136, 88–98.

    Article  Google Scholar 

  5. Peng, C., Zhao, Q., & Gao, C. (2010). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 353, 132–139.

    Article  CAS  Google Scholar 

  6. Nielsen, O. S., Reichardt, P., Christensen, T. B., Pink, D., Daugaard, S., Hermans, C., Marreaud, S., van Glabbeke, M., Blaye, J., & Judson, I. (2006). European Journal of Cancer, 42, 2303–2309.

    Article  CAS  Google Scholar 

  7. Vrignaud, S., Anton, N., Gayet, P., Benoit, J. P., & Saulnier, P. (2010). European Journal of Pharmaceutics and Biopharmaceutics, 79, 197–204.

    Article  Google Scholar 

  8. von Maltzahn, G., Park, J. H., Lin, K. Y., Singh, N., Schwöppe, C., Mesters, R., Berdel, W. E., Ruoslahti, E., Sailor, M. J., & Bhatia, S. N. (2011). Nature Materials, 10, 545–552.

    Article  Google Scholar 

  9. Bockki, M., Jongbin, L., Sanghoon, K., Kwang-Geun, L., SungHo, L., & Suyong, L. (2011). Bioresource Technology, 102, 3855–3860.

    Article  Google Scholar 

  10. Fraeye, I., Doungla, E., Duvetter, T., Moldenaers, P., Van Loey, A., & Hendrickx, M. (2009). Food Hydrocolloids, 23, 2069–2077.

    Article  CAS  Google Scholar 

  11. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Colloids and Surfaces. B, Biointerfaces, 75, 1–18.

    Article  CAS  Google Scholar 

  12. Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Annual Review of Chemical and Biomolecular Engineering, 1, 149–173.

    Article  CAS  Google Scholar 

  13. Malam, Y., Loizidou, M., & Seifalian, A. M. (2009). Trends in Pharmacological Sciences, 30, 592–599.

    Article  CAS  Google Scholar 

  14. Seo, S., Lee, C.-S., Jung, Y.-S., & Na, K. (2012). Thermo-sensitivity and triggered drug release of polysaccharide nanogels derived from pullulan-g-poly(l-lactide) copolymers. Carbohydrate Polymers, 87, 1105–1111.

    Article  CAS  Google Scholar 

  15. Manchun, S., Dass, C. R., & Sriamornsak, P. (2012). Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sciences. doi:10.1016/j.lfs.2012.01.008.

  16. Cai, H., Caihua Ni, C., & Zhang, L. (2012). Preparation of complex nano-particles based on alginic acid/poly[(2-dimethylamino) ethyl methacrylate] and a drug vehicle for doxorubicin release controlled by ionic strength. European Journal of Pharmaceutical Sciences, 45, 43–49.

    Article  CAS  Google Scholar 

  17. Oh, J. K., Lee, D. I., & Park, J. M. (2009). Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science, 34, 1261–1282.

    Article  CAS  Google Scholar 

  18. Karukstisu, K. K., Thompson, E. H. Z., Whiles, J. A., & Rosenfeld, R. J. (1998). Biophysical Chemistry, 73, 249–263.

    Article  Google Scholar 

  19. Kayal, S., & Ramanujan, R. V. (2010). Materials Science and Engineering: C, 30, 484–490.

    Article  CAS  Google Scholar 

  20. Purcell, J. M., & Fishman, M. L. (1987). Carbohydrate Research, 159, 185–190.

    Article  CAS  Google Scholar 

  21. Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, J. G. (1991). The handbook of infrared and Raman characteristic frequencies of organic molecules. Boston: Academic.

    Google Scholar 

Download references

Acknowledgments

The present work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Técnica (ANPCyT) of Argentina. We thank Dr. Paul Dumas (SMIS beam line, Soleil Synchrotron Facility, France) for his kind support and expertise during the sample analysis. We thank Mrs. Graciela Guananja from CPKelco (Buenos Aires, Argentina) for her kind help and the donation of pectin samples; and to Dr. Mario Malaspina (Laboratorio LKM S.A.) and Dr. Nicolas Martinez from Quality Pharma Laboratories for the doxorubicin samples used in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo R. Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosio, V.E., Machain, V., López, A.G. et al. Binding and Encapsulation of Doxorubicin on Smart Pectin Hydrogels for Oral Delivery. Appl Biochem Biotechnol 167, 1365–1376 (2012). https://doi.org/10.1007/s12010-012-9641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9641-8

Keywords

Navigation