Skip to main content
Log in

Effect of Feed Strategy on Methane Production and Performance of an AnSBBR Treating Effluent from Biodiesel Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the effect of different feeding times (2, 4 and 6 h) and applied volumetric organic loads (4.5, 6.0 and 7.5 gCOD L−1 day−1) on the performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) treating effluent from biodiesel production. Polyurethane foam cubes were used as inert support in the reactor, and mixing was accomplished by recirculating the liquid phase. The effect of feeding time on reactor performance showed to be more pronounced at higher values of applied volumetric organic loads (AVOLs). Highest organic material removal efficiencies achieved at AVOL of 4.5 gCOD L−1 day−1 were 87 % at 4-h feeding against 84 % at 2-h and 6-h feeding. At AVOL of 6.0 gCOD L−1 day−1, highest organic material removal efficiencies achieved with 4-h and 6-h feeding were 84 %, against 71 % at 2-h feeding. At AVOL of 7.5 gCOD L−1 day−1, organic material removal efficiency achieved with 4-h feeding was 77 %. Hence, longer feeding times favored minimization of total volatile acids concentration during the cycle as well as in the effluent, guaranteeing process stability and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BA:

Bicarbonate alkalinity, mgCaCO3 L−1

C CH4 :

Methane concentration in the gas phase, mmol L−1

C CO2 :

Carbonic gas concentration in the gas phase, mmol L−1

C M :

Methane concentration in the liquid phase in the reactor, mmolCH4 L reaction volume−1

C SF :

Organic material concentration for filtered samples, mgCOD L−1

C SR :

Residual organic material concentration for filtered samples, mgCOD L−1

C ST :

Organic material concentration for unfiltered samples, mgCOD L−1

C TS :

Total solids concentration, mg L−1

C TSS :

Total suspended solids concentration, mg L−1

C TVA :

Total volatile acids concentration, mgHAc L−1

C TVA0 :

Total volatile acids concentration in the influent, mgHAc L−1

C TVAR :

Residual total volatile acids concentration in the reactor, mgHAc L−1

C TVS :

Total volatile solids concentration, mg L−1

C VSS :

Volatile suspended solids concentration, mg L−1

k 1S :

First order apparent kinetic parameter associated with the substrate consumption, h−1

k 1TVA :

First order apparent kinetic parameter associated with the total volatile acids formation, h−1

k 2M :

First order apparent kinetic parameter associated with the methane formation, h−1

k 2TVA :

First order apparent kinetic parameter associated with the total volatile acids consumption, h−1

M TVS :

Total volatile solids mass in the reactor, gTVS

r M :

Methane formation rate, mgCH4 L−1 day−1

r S :

Substrate consumption reaction rate, mgCOD L−1 h−1

r TVA :

TVA formation and consumption rate, mgHAc L−1 h−1

STS :

Total solids concentration relative to the immobilized biomass, mgTS g foam−1

STVS :

Total volatile solids concentration relative to the immobilized biomass, mgTVS g foam−1

S TS :

Total solids concentration relative to the immobilized biomass, mgTS L reaction volume−1

S TVS :

Total volatile solids concentration relative to the immobilized biomass, mgTVS L reaction volume−1

S TVS/S TS :

Total volatile solids concentration to total solids concentration ratio in the reactor, gTVS gTS−1

t :

Time during a cycle, h

t c :

Cycle time, h

V :

Reaction medium volume of the system, L

V A :

Fed volume or renewed volume per cycle, L

AVOL:

Applied volumetric organic load, gCOD L−1 day−1

ASOL:

Applied specific organic load, mgCOD gTVS−1 day−1

RSOLSF :

Removed specific organic load for filtered effluent samples, mgCOD gTVS−1 day−1

RSOLST :

Removed specific organic load for unfiltered effluent samples, mgCOD gTVS−1 day−1

RVOLSF :

Removed volumetric organic load for filtered effluent samples, gCOD L−1 day−1

RVOLST :

Removed volumetric organic load for unfiltered effluent samples, gCOD L−1 day−1

% CH4 :

Methane molar percentage in the gas phase, %

% CO2 :

Carbonic gas molar percentage in the gas phase, %

Y CH4/COD :

Ratio between the methane concentration in the gas phase and the difference of organic material concentration in the filtered influent and effluent samples, mmolCH4 gCOD−1

ε SF :

Organic material removal efficiency for filtered effluent samples, %

ε ST :

Organic material removal efficiency for unfiltered effluent samples, %

References

  1. Angenent, L. T., Sung, S., & Raskin, L. (2002). Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Research, 36, 4648–4654.

    Article  CAS  Google Scholar 

  2. Bagley, D. M., & Brodkorb, T. S. (1999). Modeling microbial kinetics in an anaerobic sequencing batch reactor—model development and experimental validation. Water Environmental Research, 71, 1320–1332.

    Article  CAS  Google Scholar 

  3. Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Canto, C. S. A., & Zaiat, M. (2011). Effect of organic load on the performance and methane production of an AnSBBR treating effluent from biodiesel production. Applied Biochemistry and Biotechnology, 165, 347–368.

    Article  CAS  Google Scholar 

  4. Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2009). Effects of feeding time, organic loading and shock loads in the anaerobic whey treatment by an AnSBBR with circulation. Applied Biochemistry and Biotechnology, 157, 140–158.

    Article  CAS  Google Scholar 

  5. Borges, A. C., Siman, R. R., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., Foresti, E., & Borzani, W. (2004). Stirred anaerobic sequencing batch reactor containing immobilized biomass: a behavior study when submitted to different fill times. Water Science and Technology, 49, 311–318.

    CAS  Google Scholar 

  6. Bouallagui, H., Lahdheb, H., Ben Romdan, E., Rachdi, B., & Hamdi, M. (2009). Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management, 90, 1844–1849.

    Article  CAS  Google Scholar 

  7. Brito, A. G., Rodrigues, A. C., & Melo, F. L. (1997). Feasibility of a pulsed sequencing batch reactor with an anaerobic aggregated biomass for the treatment of low strength wastewaters. Water Science and Technology, 35, 193–198.

    Article  CAS  Google Scholar 

  8. Camargo, E. F. M., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Borzani, W. (2002). Treatment of low-strength wastewater using immobilized biomass in a sequencing batch external loop reactor: influence of the medium superficial velocity on the stability and performance. Brazilian Journal of Chemical Engineering, 19, 267–275.

    Article  CAS  Google Scholar 

  9. Canto, C. S. A., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2008). Anaerobic sequencing batch biofilm reactor (AnSBBR): some applications to sanitary and industrial wastewaters (chapter 2). In R. H. Theobald (Ed.), Environmental management (p. 429). New York: Nova Science.

    Google Scholar 

  10. Canto, C. S. A., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2008). Feasibility of nitrification/denitrification in a sequential batch biofilm reactor with liquid circulation applied to post-treatment. Bioresource Technology, 99, 644–654.

    Article  Google Scholar 

  11. Chebel, F. X., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2006). Analysis of performance of an anaerobic sequential batch reactor submitted to increasing organic load with different influent concentrations and cycle lengths. Journal of Applied Biochemistry and Biotechnology, 133, 171–187.

    Article  CAS  Google Scholar 

  12. Damasceno, L. H. S., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2007). Effects of feeding time and organic loading in an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted whey. Journal of Environmental Management, 85, 927–935.

    Article  CAS  Google Scholar 

  13. Damasceno, L. H. S., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2008). Effect of mixing mode on the behavior of an ASBBR with immobilized biomass in the treatment of cheese whey. Brazilian Journal of Chemical Engineering, 25, 291–298.

    Article  CAS  Google Scholar 

  14. Dilallo, R., & Albertson, O. E. (1961). Volatile acids by direct titration. Journal of Water Pollution Control Federation, 3, 356–365.

    Google Scholar 

  15. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). Hydrogen and ethanol production from glycerol containing wastes discharges after biodiesel manufacturing process. Journal of Bioscience and Bioengineering, 100, 260–265.

    Article  CAS  Google Scholar 

  16. Lehninger, A. L., Nelson, D. L., & Cox, M. M. (1993). Principles of biochemistry (2nd ed.). New York: Worth.

    Google Scholar 

  17. Massé, D. I., & Masse, L. (2000). Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors. Canadian Agricultural Engineering, 42, 131–137.

    Google Scholar 

  18. Michelan, R., Zimmer, T. R., Rodrigues, J. A. D., Ratusznei, S. M., Moraes, D., Zaiat, M., & Foresti, E. (2009). Effect of impeller type and mechanical agitation on the mass transfer and power consumption aspects of ASBR operation treating synthetic wastewater. Journal of Environmental Management, 90, 1357–1364.

    Article  CAS  Google Scholar 

  19. Moreira, M. B., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2008). Influence of organic shock loads in an ASBBR treating synthetic wastewater with different concentration levels. Bioresource Technology, 99, 3256–3266.

    Article  CAS  Google Scholar 

  20. Ndegwa, P. M., Hanilton, D. W., Lalman, J. A., & Cumba, H. J. (2005). Optimization of anaerobic sequencing batch reactors treating dilute swine slurries. Transactions of ASAE, 48, 1575–1583.

    CAS  Google Scholar 

  21. Nishio, N., & Nakashimada, Y. (2007). Recent development of digestion process for energy recovery from wastes. Journal of Bioscience and Bioengineering, 103, 105–112.

    Article  CAS  Google Scholar 

  22. Oliveira, R. P., Ghilardi, J. A., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2008). Anaerobic sequencing batch biofilm reactor applied to automobile industry wastewater treatment: volumetric loading rate and feed strategy effects. Chemical Engineering and Processing, 47, 1380–1389.

    CAS  Google Scholar 

  23. Oliveira, D. S., Prinholato, A. C., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2009). AnSBBR applied to the treatment of wastewater from a personal care industry: effect of organic load and fill time. Journal of Environmental Management, 90, 3070–3081.

    Article  Google Scholar 

  24. Orra, A. A., Ratusznei, S. M., Rodrigues, J. A. D., Foresti, E., & Zaiat, M. (2004). Effects of feeding strategies on the performance of an anaerobic discontinuous reactor containing immobilized biomass with circulation system for liquid-phase mixing. Water Science and Technology, 49, 303–310.

    CAS  Google Scholar 

  25. Perry, R. H., & Green, D. W. (1997). Chemical engineers’ handbook (7th ed.). New York: McGraw-Hill.

    Google Scholar 

  26. Ramos, A. C. T., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2003). Mass transfer improvement of a fixed-bed anaerobic sequencing batch reactor with liquid phase circulation. Journal of Science and Technology of the Americas – Interciencia, 28, 214–219.

    Google Scholar 

  27. Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Improved alkalimetric monitoring for anaerobic digestor of high-strength wastes. Journal of Water Pollution Control Federation, 58, 406–411.

    CAS  Google Scholar 

  28. Rodrigues, J. A. D., Pinto, A. G., Ratusznei, S. M., Zaiat, M., & Gedraite, R. (2004). Enhancement of the performance of an anaerobic sequencing batch reactor treating low strength wastewater through implementation of a variable stirring rate program. Brazilian Journal of Chemical Engineering, 21, 423–434.

    Article  CAS  Google Scholar 

  29. Rodrigues, J. A. D., Ratusznei, S. M., Camargo, E. F. M., & Zaiat, M. (2003). Influence of agitation rate on the performance of an anaerobic sequencing batch reactor containing granulated biomass treating low-strength wastewater. Advances in Environmental Research, 7, 405–410.

    Article  CAS  Google Scholar 

  30. Sabourin-Provost, G., & Hallenbeck, P. C. (2009). High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresource Technology, 100, 3513–3517.

    Article  CAS  Google Scholar 

  31. Sahinkaya, E., & Dilek, F. B. (2007). Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2,4-DCP. Journal of Environmental Management, 83, 427–436.

    Article  CAS  Google Scholar 

  32. Selma, V. C., Cotrim, L. H. B., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2010). ASBR applied to the treatment of biodiesel production effluent: effect of organic load and fill time on performance and methane production. Applied Biochemistry and Biotechnology, 162, 2365–2380.

    Article  CAS  Google Scholar 

  33. Shizas, I., & Bagley, D. M. (2002). Improving anaerobic sequencing batch reactor performance by modifying operational parameters. Water Research, 36, 363–367.

    Article  CAS  Google Scholar 

  34. Sirianuntapiboon, S., Chairattanawan, K., & Surasinanant, P. (2007). Some properties of a sequencing batch reactor for treatment of wastewater containing thiocyanate compounds. Journal of Environmental Management, 85, 330–337.

    Article  CAS  Google Scholar 

  35. Sirianuntapiboon, S., Sadahiro, O., & Salee, P. (2007). Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes. Journal of Environmental Management, 85, 162–170.

    Article  CAS  Google Scholar 

  36. Standard Methods for the Examination of Water and Wastewater. (1995). APHA, AWWA, WPCF (19th ed.). Washington: American Public Health Association.

    Google Scholar 

  37. Suehara, K., Kawamoto, Y., Fujii, E., Kohda, J., Nakano, Y., & Yano, T. (2005). Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification. Journal of Bioscience and Bioengineering, 100, 437–442.

    Article  CAS  Google Scholar 

  38. Varesche, M. B., Zaiat, M., Vieira, L. G. T., Vazoller, R. F., & Foresti, E. (1997). Microbial colonization of polyurethane foam matrices in horizontal-flow anaerobic immobilized-sludge reactor. Applied Microbiology and Biotechnology, 48, 534–538.

    Article  CAS  Google Scholar 

  39. Xiangwen, S., Dangcong, P., Zhaohua, T., & Xinghua, J. (2008). Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR). Bioresource Technology, 99, 3182–3186.

    Article  Google Scholar 

  40. Yang, Y., Tsukahara, K., & Sawayama, S. (2008). Biodegradation and methane production from glycerol-containing synthetic wastes with fixed-bed bioreactor under mesophilic and thermophilic anaerobic conditions. Process Biochemistry, 43, 362–367.

    Article  CAS  Google Scholar 

  41. Yazdani, S. S., & Gonzalez, R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Biotechnology, 18, 213–219.

    CAS  Google Scholar 

  42. Zaiat, M., Cabral, A. K. A., & Foresti, E. (1994). Horizontal-flow anaerobic immobilized sludge reactor for wastewater treatment: conception and performance evaluation. Revista Brasileira de Engenharia – Caderno de Engenharia Química, 11, 33–42.

    Google Scholar 

  43. Zaiat, M., Rodrigues, J. A. D., Ratusznei, S. M., Camargo, E. F. M., & Borzani, W. (2001). Anaerobic sequencing batch reactors for wastewater treatment: a developing technology. Applied Microbiology and Biotechnology, 55, 29–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (São Paulo, Brasil), process number 05/51.702-9, and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, process number 471363/2008-1. The authors acknowledge Dr. Baltus C. Bonse for the revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. D. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovato, G., Bezerra, R.A., Rodrigues, J.A.D. et al. Effect of Feed Strategy on Methane Production and Performance of an AnSBBR Treating Effluent from Biodiesel Production. Appl Biochem Biotechnol 166, 2007–2029 (2012). https://doi.org/10.1007/s12010-012-9627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9627-6

Keywords

Navigation