Abstract
Fucoxanthin, one of the main marine carotenoids, is abundant in macro- and microalgae. Here, fucoxanthin was isolated and structurally identified as the major carotenoid in the diatom Phaeodactylum tricornutum through chromatographic and spectroscopic methods, such as liquid chromatography–positive-ion atmospheric pressure chemical ionization/mass spectroscopy and nuclear magnetic resonance. This pigment was quantified by reverse-phase high-performance liquid chromatography, and a number of extraction procedures were assessed to investigate the effect of solvent type, extraction time, temperature, and extraction method (maceration, ultrasound-assisted extraction, Soxhlet extraction, and pressurized liquid extraction). Among the investigated solvents, ethanol provided the best fucoxanthin extraction yield (15.71 mg/g freeze-dried sample weight). Fucoxanthin content in the extracts produced by the different methods was quite constant (15.42–16.51 mg/g freeze-dried sample weight) but increased steeply based on the percentage of ethanol in water, emphasizing the importance of ethanol in the extraction. The results indicate that P. tricornutum is a rich source of fucoxanthin (at least ten times more abundant than that in macroalgae) that is easily extracted with ethanol, suggesting potential applications in human and animal food, health, and cosmetics.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Cadoret, J. P., & Bernard, O. (2008). Journal de la Société de Biologie, 202, 201–211.
Muller-Feuga, A. (2000). Journal of Applied Phycology, 12, 527–534.
Pasquet, V., Chérouvrier, J. R., Farhat, F., Thiéry, V., Piot, J. M., Bérard, J. B., et al. (2011). Process Biochemistry, 46, 59–67.
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Journal of Bioscience and Bioengineering, 101, 87–96.
Pulz, O., & Gross, W. (2004). Applied Microbiology and Biotechnology, 65, 635–648.
Rebolloso-Fuentes, M. M., Vavarro-Pérez, A., Ramos-Miras, J. J., & Guil-Guerrero, J. L. (2001). Journal of Food Biochemistry, 25, 57–76.
De Martino, A., Meichenin, A., Shi, J., Pan, K. H., & Bowler, C. (2007). Journal of Phycology, 43, 992–1009.
De Riso, V., Raniello, R., Maumus, F., Rogato, A., Bowler, C., & Falciatore, A. (2009). Nucleic Acids Research, 37, e96.
Grima, E. M., Perez, J. A. S., Camacho, F. G., Fernandez, F. G. A., Sevilla, J. M. F., & Sanz, F. V. (1994). Biotechnology Letters, 16, 1035–1040.
Alías, C. B., López, M. C. G. M., Fernández, F. G. A., Sevilla, J. M. F., Sánchez, J. L. G., & Grima, E. M. (2004). Biotechnology and Bioengineering, 87, 723–733.
Haugan, J. A., & Liaaen-Jensen, S. (1992). Phytochemistry, 31, 1359–1361.
Caron, L., Douady, D., Quinet-Szely, M., de Goër, S., & Berkaloff, C. (1996). Journal of Molecular Evolution, 43, 270–280.
Veith, T., & Buchel, C. (2007). BBA-Bioenergetics, 1767, 1428–1435.
Sachindra, N. M., Sato, E., Maeda, H., Hosokawa, M., Niwano, Y., Kohno, M., et al. (2007). Journal of Agricultural and Food Chemistry, 55, 8516–8522.
Maeda, H., Hosokawa, M., Sashima, T., Funayama, K., & Miyashita, K. (2005). Biochemical and Biophysical Research Communications, 332, 392–397.
Kanazawa, K., Ozaki, Y., Hashimoto, T., Das, S. K., Matsushita, S., Hirano, M., et al. (2008). Food Science and Technology Research, 14, 573–582.
Walne, P. R. (1974). Culture of bivalve mollusks: 50 years experience at Conwy. Farnham: Fishing News Books.
Haugan, J. A., Englert, G., Glinz, E., & Liaaen-Jensen, S. (1992). Acta Chemica Scandinavica, 46, 389–395.
Carreto, J. I., & Catoggio, J. A. (1997). Marine Biology, 40, 109–116.
Rangi, M., & d’Alcalá, M. R. (2007). Journal of Plankton Research, 29, 141–156.
Kosakowska, A., Lewandowska, J., Stoń, J., & Burkiewicz, K. (2004). BioMetals, 17, 45–52.
Henriques, M., Silva, A., & Rocha, J. (2007). In A. Méndez-Vilas (Ed.), Communicating current research and educational topics and trends in applied microbiology (p. 586). Badajoz: Formatex.
Farnández-Sevilla, J. M., Acién Fernández, F. G., & Molina Grima, E. (2010). Applied Microbiolology and Biotechnology, 86, 27–40.
Moreau, D., Tomasoni, C., Jacquot, C., Kaas, R., Guedes, R. L., Cadoret, J. P., et al. (2006). Environmental Toxicology and Pharmacology, 22, 97–103.
Punin Crespo, M. O., & Laga Yusty, M. A. (2005). Chemosphere, 59, 1407–1413.
Carabias-Martínez, R., Rodríguez-Gonzalo, E., Revilla-Ruiz, P., & Hernández-Méndez, J. (2005). Journal of Chromatography. A, 1089, 1–17.
Ma, Y., Te, X., Hao, Y., Xu, G., Xu, G., & Liu, D. (2008). Ultrasonics Sonochemisty, 15, 227–232.
Cha, K. H., Lee, H. J., Koo, S. Y., Song, D. G., Lee, D. U., & Pan, C. H. (2010). Journal of Agricultural and Food Chemistry, 58, 793–797.
Mori, K., Ooi, T., Hiraoka, M., Oka, N., Hamada, H., Tamura, M., et al. (2004). Marine Drugs, 2, 63–72.
Kim, S. J., Kim, H. J., Moon, J. S., Kim, J. M., Kang, S. G., & Jung, S. T. (2004). Journal of Korean Society for Food Science and Nutrition, 33, 847–851.
Wang, W. J., Wang, G. C., Zhang, M., & Tseng, C. K. (2005). Journal of Integrative Plant Biology, 47, 1009–1015.
Seely, G. R., Duncan, M. J., & Vidaver, W. E. (1972). Marine Biology, 12, 184–188.
Jin, E., Polle, J. E. W., Lee, H. K., Hyun, S. M., & Chang, M. (2003). Journal of Microbiology and Biotechnology, 13, 165–174.
Fernández Sevilla, J. M., Cerón García, M. C., Sánchez Mirón, A., Hassan Belarbi, El, García Camacho, F., & Molina Grima, E. (2004). Biotechnology Progress, 20, 728–736.
Fajardo, A. R., Cerdan, L. E., Medina, A. R., Fernandez, F. G. A., Moreno, P. A. G., & Grima, E. M. (2007). European Journal of Lipid Science and Technology, 109, 120–126.
Acknowledgments
This research was financially supported by the Ministry of Education, Science and Technology (MEST), Gangwon Province, Gangneung City, Gangneung Science Industry Foundation (GSIF) as the R&D Project for Gangneung science park promoting program.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kim, S.M., Jung, YJ., Kwon, ON. et al. A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum tricornutum . Appl Biochem Biotechnol 166, 1843–1855 (2012). https://doi.org/10.1007/s12010-012-9602-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-012-9602-2