Skip to main content
Log in

A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum tricornutum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fucoxanthin, one of the main marine carotenoids, is abundant in macro- and microalgae. Here, fucoxanthin was isolated and structurally identified as the major carotenoid in the diatom Phaeodactylum tricornutum through chromatographic and spectroscopic methods, such as liquid chromatography–positive-ion atmospheric pressure chemical ionization/mass spectroscopy and nuclear magnetic resonance. This pigment was quantified by reverse-phase high-performance liquid chromatography, and a number of extraction procedures were assessed to investigate the effect of solvent type, extraction time, temperature, and extraction method (maceration, ultrasound-assisted extraction, Soxhlet extraction, and pressurized liquid extraction). Among the investigated solvents, ethanol provided the best fucoxanthin extraction yield (15.71 mg/g freeze-dried sample weight). Fucoxanthin content in the extracts produced by the different methods was quite constant (15.42–16.51 mg/g freeze-dried sample weight) but increased steeply based on the percentage of ethanol in water, emphasizing the importance of ethanol in the extraction. The results indicate that P. tricornutum is a rich source of fucoxanthin (at least ten times more abundant than that in macroalgae) that is easily extracted with ethanol, suggesting potential applications in human and animal food, health, and cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cadoret, J. P., & Bernard, O. (2008). Journal de la Société de Biologie, 202, 201–211.

    Article  CAS  Google Scholar 

  2. Muller-Feuga, A. (2000). Journal of Applied Phycology, 12, 527–534.

    Article  Google Scholar 

  3. Pasquet, V., Chérouvrier, J. R., Farhat, F., Thiéry, V., Piot, J. M., Bérard, J. B., et al. (2011). Process Biochemistry, 46, 59–67.

    Article  CAS  Google Scholar 

  4. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Journal of Bioscience and Bioengineering, 101, 87–96.

    Article  CAS  Google Scholar 

  5. Pulz, O., & Gross, W. (2004). Applied Microbiology and Biotechnology, 65, 635–648.

    Article  CAS  Google Scholar 

  6. Rebolloso-Fuentes, M. M., Vavarro-Pérez, A., Ramos-Miras, J. J., & Guil-Guerrero, J. L. (2001). Journal of Food Biochemistry, 25, 57–76.

    Article  CAS  Google Scholar 

  7. De Martino, A., Meichenin, A., Shi, J., Pan, K. H., & Bowler, C. (2007). Journal of Phycology, 43, 992–1009.

    Article  Google Scholar 

  8. De Riso, V., Raniello, R., Maumus, F., Rogato, A., Bowler, C., & Falciatore, A. (2009). Nucleic Acids Research, 37, e96.

    Article  Google Scholar 

  9. Grima, E. M., Perez, J. A. S., Camacho, F. G., Fernandez, F. G. A., Sevilla, J. M. F., & Sanz, F. V. (1994). Biotechnology Letters, 16, 1035–1040.

    Article  CAS  Google Scholar 

  10. Alías, C. B., López, M. C. G. M., Fernández, F. G. A., Sevilla, J. M. F., Sánchez, J. L. G., & Grima, E. M. (2004). Biotechnology and Bioengineering, 87, 723–733.

    Article  Google Scholar 

  11. Haugan, J. A., & Liaaen-Jensen, S. (1992). Phytochemistry, 31, 1359–1361.

    Article  CAS  Google Scholar 

  12. Caron, L., Douady, D., Quinet-Szely, M., de Goër, S., & Berkaloff, C. (1996). Journal of Molecular Evolution, 43, 270–280.

    Article  CAS  Google Scholar 

  13. Veith, T., & Buchel, C. (2007). BBA-Bioenergetics, 1767, 1428–1435.

    Article  CAS  Google Scholar 

  14. Sachindra, N. M., Sato, E., Maeda, H., Hosokawa, M., Niwano, Y., Kohno, M., et al. (2007). Journal of Agricultural and Food Chemistry, 55, 8516–8522.

    Article  CAS  Google Scholar 

  15. Maeda, H., Hosokawa, M., Sashima, T., Funayama, K., & Miyashita, K. (2005). Biochemical and Biophysical Research Communications, 332, 392–397.

    Article  CAS  Google Scholar 

  16. Kanazawa, K., Ozaki, Y., Hashimoto, T., Das, S. K., Matsushita, S., Hirano, M., et al. (2008). Food Science and Technology Research, 14, 573–582.

    Article  CAS  Google Scholar 

  17. Walne, P. R. (1974). Culture of bivalve mollusks: 50 years experience at Conwy. Farnham: Fishing News Books.

    Google Scholar 

  18. Haugan, J. A., Englert, G., Glinz, E., & Liaaen-Jensen, S. (1992). Acta Chemica Scandinavica, 46, 389–395.

    Article  CAS  Google Scholar 

  19. Carreto, J. I., & Catoggio, J. A. (1997). Marine Biology, 40, 109–116.

    Article  Google Scholar 

  20. Rangi, M., & d’Alcalá, M. R. (2007). Journal of Plankton Research, 29, 141–156.

    Article  Google Scholar 

  21. Kosakowska, A., Lewandowska, J., Stoń, J., & Burkiewicz, K. (2004). BioMetals, 17, 45–52.

    Article  CAS  Google Scholar 

  22. Henriques, M., Silva, A., & Rocha, J. (2007). In A. Méndez-Vilas (Ed.), Communicating current research and educational topics and trends in applied microbiology (p. 586). Badajoz: Formatex.

    Google Scholar 

  23. Farnández-Sevilla, J. M., Acién Fernández, F. G., & Molina Grima, E. (2010). Applied Microbiolology and Biotechnology, 86, 27–40.

    Article  Google Scholar 

  24. Moreau, D., Tomasoni, C., Jacquot, C., Kaas, R., Guedes, R. L., Cadoret, J. P., et al. (2006). Environmental Toxicology and Pharmacology, 22, 97–103.

    Article  CAS  Google Scholar 

  25. Punin Crespo, M. O., & Laga Yusty, M. A. (2005). Chemosphere, 59, 1407–1413.

    Article  CAS  Google Scholar 

  26. Carabias-Martínez, R., Rodríguez-Gonzalo, E., Revilla-Ruiz, P., & Hernández-Méndez, J. (2005). Journal of Chromatography. A, 1089, 1–17.

    Article  Google Scholar 

  27. Ma, Y., Te, X., Hao, Y., Xu, G., Xu, G., & Liu, D. (2008). Ultrasonics Sonochemisty, 15, 227–232.

    Article  CAS  Google Scholar 

  28. Cha, K. H., Lee, H. J., Koo, S. Y., Song, D. G., Lee, D. U., & Pan, C. H. (2010). Journal of Agricultural and Food Chemistry, 58, 793–797.

    Article  CAS  Google Scholar 

  29. Mori, K., Ooi, T., Hiraoka, M., Oka, N., Hamada, H., Tamura, M., et al. (2004). Marine Drugs, 2, 63–72.

    Article  CAS  Google Scholar 

  30. Kim, S. J., Kim, H. J., Moon, J. S., Kim, J. M., Kang, S. G., & Jung, S. T. (2004). Journal of Korean Society for Food Science and Nutrition, 33, 847–851.

    Article  CAS  Google Scholar 

  31. Wang, W. J., Wang, G. C., Zhang, M., & Tseng, C. K. (2005). Journal of Integrative Plant Biology, 47, 1009–1015.

    Article  CAS  Google Scholar 

  32. Seely, G. R., Duncan, M. J., & Vidaver, W. E. (1972). Marine Biology, 12, 184–188.

    Article  CAS  Google Scholar 

  33. Jin, E., Polle, J. E. W., Lee, H. K., Hyun, S. M., & Chang, M. (2003). Journal of Microbiology and Biotechnology, 13, 165–174.

    CAS  Google Scholar 

  34. Fernández Sevilla, J. M., Cerón García, M. C., Sánchez Mirón, A., Hassan Belarbi, El, García Camacho, F., & Molina Grima, E. (2004). Biotechnology Progress, 20, 728–736.

    Article  Google Scholar 

  35. Fajardo, A. R., Cerdan, L. E., Medina, A. R., Fernandez, F. G. A., Moreno, P. A. G., & Grima, E. M. (2007). European Journal of Lipid Science and Technology, 109, 120–126.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Education, Science and Technology (MEST), Gangwon Province, Gangneung City, Gangneung Science Industry Foundation (GSIF) as the R&D Project for Gangneung science park promoting program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol-Ho Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.M., Jung, YJ., Kwon, ON. et al. A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum tricornutum . Appl Biochem Biotechnol 166, 1843–1855 (2012). https://doi.org/10.1007/s12010-012-9602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9602-2

Keywords

Navigation