Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 7, pp 1831–1842 | Cite as

Isolation, Purification and Characterisation of Low Molecular Weight Xylanase from Bacillus pumilus SSP-34

  • S. SubramaniyanEmail author
Article

Abstract

Low molecular weight endo-xylanase from Bacillus pumilus SSP-34 was purified to homogeneity using ion exchange and size exclusion chromatographies. Xylanases were isolated by novel purification protocol which includes the use of anion exchange matrix such as DEAE Sepharose CL 6B with less affinity towards enzyme protein. The purified B. pumilus SSP-34 have a molecular weight of 20 kDa, with optimum pH and temperature at 6.0 and 50 °C, respectively. The enzyme was stable at 50 °C for 30 min. It showed remarkable stability at pH values ranging from 4.5 to 9 when the reaction was carried out at 50 °C. K m and V max values, determined with oats spelts xylan were 6.5 mg ml−1 and 1,233 μmol min−1 mg−1 protein, respectively, and the specific activity was 1,723 U mg−1

Keywords

Xylanase SSP 34 Bacillus pumilus Cation Anion Size exclusion Chromatography Purification Thermostable enzyme 

Notes

Acknowledgements

I am very grateful to my late research guide, Dr. P. Prema, who worked as a senior scientist in Biotechnology Division, National Institute for Interdisciplinary Sciences and Technology (Formerly Regional Research Laboratory), Thiruvananthapuram 695019. Without her help, this work would not have been possible. I am also thankful to NIIST Trivandrum and CSIR New Delhi, INDIA. I use this opportunity to express my gratitude to the Director, Department of Collegiate Education, Government of Kerala, India, and the Principal, University College, Trivandrum.

References

  1. 1.
    Subramaniyan, S., & Prema, P. (2002). Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Critical Reviews in Biotechnology, 22(1), 33–64.CrossRefGoogle Scholar
  2. 2.
    Puls, J. (1997). Chemistry and biochemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. Macromolecular Symposia, 120, 183–196.CrossRefGoogle Scholar
  3. 3.
    Subramaniyan, S., & Prema, P. (1998). Optimization of cultural parameters for the synthesis of endo-xylanases from Bacillus SSP-34. Journal of Scientific and Industrial Research, 57(10–11), 611–616.Google Scholar
  4. 4.
    Wong, K. K. Y., Tan, L. U. L., & Saddler, J. N. (1988). Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiological Reviews, 52, 305–317.Google Scholar
  5. 5.
    Ko, C.H., Lin, Z. P., Tu, J., Tsai, C. H., Liu, C. C., Chen, H. T., & Wang, T. P. (2010). Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. International Biodeterioration & Biodegradation, 64(1), 13–19.CrossRefGoogle Scholar
  6. 6.
    Joo, J. C., Pack S. P., Kim Y. H., Yoo YJ. (2011). Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. Journal of Biotechnology, 151 (1).Google Scholar
  7. 7.
    Esteban, R., Vilanueva, J. R., & Vila, T. G. (1982). β-d-Xylanases of Bacillus circulans WL-12. Canadian Journal of Microbiology, 28, 733–739.CrossRefGoogle Scholar
  8. 8.
    Bataillon, M., Nunes Cardinali, A. P., Castillon, N., & Duchiron, F. (2000). Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme and Microbial Technology, 26(2–4), 187–192.CrossRefGoogle Scholar
  9. 9.
    Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2006). A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzyme and Microbial Technology, 39(7), 1492–1498.CrossRefGoogle Scholar
  10. 10.
    Li, X., She, Y., Sun, B., Song, H., Zhu, Y., Lv, Y., & Song, H. (2010). Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp. Biochemical Engineering Journal, 52(1), 71–78.CrossRefGoogle Scholar
  11. 11.
    Subramaniyan, S., Ramakrishna, S. V., & Prema, P. (1997). Isolation and screening for alkaline thermostable xylanases. Journal of Basic Microbiology, 37(6), 431–437.CrossRefGoogle Scholar
  12. 12.
    Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23, 257–270.CrossRefGoogle Scholar
  13. 13.
    Subramaniyan, S., Sandhia, G. S., & Prema, P. (2001). Control of xylanase production without protease activity in Bacillus sp. By selection of nitrogen source. Biotechnology Letters, 23, 369–371.CrossRefGoogle Scholar
  14. 14.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  15. 15.
    Morag, E., Bayer, E. A., & Lamed, R. (1990). Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. Journal of Bacteriology, 172, 6098–6105.Google Scholar
  16. 16.
    Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–666.CrossRefGoogle Scholar
  17. 17.
    Okada, H., & Shinmyo, A. (1988). Xylanase of Bacillus pumilus. Methods in Enzymology, 160(A), 632–637.CrossRefGoogle Scholar
  18. 18.
    Tsenga, M. J., Yap, M. N., Ratanakhanokchai, K., Kyu, K. L., & Chen, S. T. (2002). Purification and characterization of two cellulase free xylanases from an alkaliphilic Bacillus firmus. Enzyme and Microbial Technology, 30, 590–595.CrossRefGoogle Scholar
  19. 19.
    Yamura, I., Koga, T., Matsumoto, T., & Kato, T. (1997). Purification and some properties of endo-1,4-β-D-xylanase from a fresh water mollusc, Pomacea insularus (de Ordigny). Bioscience, Biotechnology, and Biochemistry, 61(4), 615–620.CrossRefGoogle Scholar
  20. 20.
    Pembroke, J. T., Mc Mohan, M., & Sweeney, B. (1995). Purification and characterisation of a cellulose binding endoxylanase from Cellulomonas flavigena. Biotechnology Letters, 17(3), 331–334.CrossRefGoogle Scholar
  21. 21.
    Morales, P., Madarro, A., Perez-Gonzalez, J. A., Sendra, J. M., Pinaga, F., & Flors, A. (1993). Purification and characterization of alkaline xylanases from Bacillus polymyxa. Applied and Environmental Microbiology, 59(5), 1376–1382.Google Scholar
  22. 22.
    Wang, P., Ali, S., Mason, J.C., Sims, P. F. G., Broda P. (1992). Xylanases from Streptomyces cyaneus. In: J. Visser, M. A. Kusters-van Someren, A. G. J. Voragen (Eds.), Xylans and xylanases. Prog. Biotechnol., 7, 225–234. Amsterdam: Elsevier.Google Scholar
  23. 23.
    Khanna, S., & Gauri, S. (1993). Regulation, purification, and properties of xylanase from Cellulomonas fimi. Enzyme and Microbial Technology, 15(11), 990–995.CrossRefGoogle Scholar
  24. 24.
    Shrinivas, D., Savitha, G., Raviranjan, K., & Naik, G. R. (2010). A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification and characterization. Appl. Biochem. Biotechnology, 162, 2049–2057.Google Scholar
  25. 25.
    Renner, M. J., Haack S. K., Breznak, J. A. (1994). Preliminary characterization of the 'xylanase' system of Cytophaga xylanolytica. Abstr. Gen. Meet. Am. Soc. Microbiol. 94 Meet, 296.Google Scholar
  26. 26.
    Debeire-Gosselin, M., Loonis, M., Samain, E., & Debeire, P. (1992). Purification and properties of a 22 kDa endoxylanase excreted by a new strain of thermophilic Bacillus. In J. Visser, M. A. Kusters-van Someren, & A. G. J. Voragen (Eds.), Xylans and xylanases (pp. 463–466). Amsterdam: Elsevier.Google Scholar
  27. 27.
    Debeire-Gosselin, M., Touzel, J. P., & Debeire, P. (1992). Isoxylanases from the thermophile Clostridium thermolacticum. In J. Visser, M. A. Kusters-van Someren, & A. G. J. Voragen (Eds.), Xylans and Xylanases (pp. 471–474). Amsterdam: Elsevier.Google Scholar
  28. 28.
    Winterhalter, C., & Liebl, W. (1995). Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Applied and Environmental Microbiology, 61(5), 1810–1815.Google Scholar
  29. 29.
    Kristjansson, M. M., & Kinsella, J. E. (1991). Protein and enzyme stability: structural thermodynamic and experimental aspects. Advances in Food and Nutrition Research, 35, 237–316.CrossRefGoogle Scholar
  30. 30.
    Nakamura, S., Nakai, R., Wakabayashi, K., Ishigura, Y., Aono, R., & Horikoshi, K. (1994). Thermophilic alkaline xylanase from newly isolated alkaliphilic and thermophilic Bacillus sp. Strain TAR-1. Biosci. Biotech. Biochem, 58(1), 78–81.CrossRefGoogle Scholar
  31. 31.
    Khasin, A., Alchanati, I., & Shoham, Y. (1993). Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Applied and Environmental Microbiology, 59, 1725–1730.Google Scholar
  32. 32.
    Kubata, K. B., Horitsu, H., Kawai, K., Takamizawa, K., & Suzuki, T. (1992). XylanaseI of Aeromonas caviae ME-I isolated from the intestine of a herbivorous insect (Samia cynthia pryeri). Biosci. Biotech. Biochem., 56(9), 1463–1464.CrossRefGoogle Scholar
  33. 33.
    Keskar, S. S. (1992). High activity xylanase from thermotolerant Streptomyces T7: cultural conditions and enzyme properties. Biotech. Letters, 14(6), 481–486.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Botany and Research CentreUniversity CollegeThiruvananthapuramIndia

Personalised recommendations