Skip to main content

Sago Pith Residue as an Alternative Cheap Substrate for Fermentable Sugars Production


Sago pith residue is one of the most abundant lignocellulosic biomass which can serve as an alternative cheap substrate for fermentable sugars production. This residue is the fibrous waste left behind after the starch extraction process and contains significant amounts of starch (58%), cellulose (23%), hemicellulose (9.2%) and lignin (3.9%). The conversion of sago pith residue into fermentable sugars is commonly performed using cellulolytic enzymes or known as cellulases. In this study, crude cellulases were produced by two local isolates, Trichoderma asperellum UPM1 and Aspergillus fumigatus, UPM2 using sago pith residue as substrate. A. fumigatus UPM2 gave the highest FPase, CMCase and β-glucosidase activities of 0.39, 23.99 and 0.78 U/ml, respectively, on day 5. The highest activity of FPase, CMCase and β-glucosidase by T. asperellum UPM1 was 0.27, 12.03 and 0.42 U/ml, respectively, on day 7. The crude enzyme obtained from A. fumigatus UPM2 using β-glucosidase as the rate-limiting enzyme (3.9, 11.7 and 23.4 IU) was used for the saccharification process to convert 5% (w/v) sago pith residue into reducing sugars. Hydrolysis of sago pith residue using crude enzyme containing β-glucosidase with 23.4 IU, produced by A. fumigatus UPM2 gave higher reducing sugars production of 20.77 g/l with overall hydrolysis percentage of 73%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Abu Bakar, N. K., Abd-Aziz, S., Hassan, M. A., & Ghazali, F. M. (2010). Biotechnology, 9(1), 73–78.

    Article  CAS  Google Scholar 

  2. 2.

    Apun, K., Salleh, M. A., & Jong, B. C. (2000). Journal of General and Applied Microbiology, 46, 263–267.

    Article  CAS  Google Scholar 

  3. 3.

    Azhari, S. B., Razak, N. A. A., Rahman, N. A. A., Budiatman, S., Shirai, Y., & Hassan, M. A. (2009). Pertanika Journal of Tropical Agricultural Science, 32(2), 143–151.

    Google Scholar 

  4. 4.

    Bernfeld, P. (1955). Amylase, α and β. Methods in Enzymology, 17, 149.

    Article  Google Scholar 

  5. 5.

    Bujang, K.B. (1997). Regional training course. Hat Yai, Thailand.

  6. 6.

    Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., & Xi, Y. (2008). Bioresource Technology, 99(16), 7623–7629.

    Article  CAS  Google Scholar 

  7. 7.

    Goering, H. K., & Van Soest, P. J. (1970). USDA Handbook 379. Washington: Govt. Print Office.

    Google Scholar 

  8. 8.

    Harhangi, H. R., Peter, J. M. S., Akhmanova, A., Jetten, M. S. M., van der Drift, C., & Op den Camp, H. J. M. (2002). Biochimica et Biophysica Acta, 1574(3), 293–303.

    CAS  Google Scholar 

  9. 9.

    Howell, J. A. (1978). Biotechnology and Bioengineering, 20, 847–863.

    Article  CAS  Google Scholar 

  10. 10.

    Kadam, S. K., & Demain, A. L. (1989). Biochemical and Biophysical Research Communications, 161, 706–711.

    Article  CAS  Google Scholar 

  11. 11.

    Khan, A. W., Meek, E., & Henschel, J. R. (1985). Enzyme and Microbial Technology, 7, 465–467.

    Article  CAS  Google Scholar 

  12. 12.

    Krishna, C. (1999). Bioresource Technology, 69, 231–239.

    Article  CAS  Google Scholar 

  13. 13.

    Kumaran, S., Sastry, C. A., & Vikineswary, S. (1997). World Journal of Microbiology and Biotechnology, 13(1), 43–49.

    Article  CAS  Google Scholar 

  14. 14.

    Kumoro, A. C., Ngoh, G. C., Hasan, M., Ong, C. H., & Teoh, E. C. (2008). Asian Journal of Scientific Research, 1, 412–420.

    Article  CAS  Google Scholar 

  15. 15.

    Lowry, O. H., Rosebrough, N. J., Farr, A., & Randall, R. J. (1959). Journal of Biological Chemistry, 193, 265–275.

    Google Scholar 

  16. 16.

    Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Biotechnol Progress, 15(5), 804–816.

    Article  CAS  Google Scholar 

  17. 17.

    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  18. 18.

    Mun, W. K., Rahman, N. A. A., Abd-Aziz, S., Vikineswary, S., & Hassan, M. A. (2008). Research Journal of Microbiology, 3(6), 474–481.

    Article  CAS  Google Scholar 

  19. 19.

    Ozawa, T., Takahiro, O., & Osama, N. (1996). Proceedings of the Sixth International Sago Symposium, Pekan Baru.

  20. 20.

    Palma-Fernandez, E. R. D., Gomes, E., & Da-Silva, R. (2002). Folia Microbiologica, 47, 685–690.

    Article  Google Scholar 

  21. 21.

    Roslan, A. M., Hassan, M. A., Abd-Aziz, S., & Yee, P. L. (2009). International Journal of Agricultural Research, 4(5), 185–192.

    Article  CAS  Google Scholar 

  22. 22.

    Shahrim, Z., Sabaratnam, V., Rahman, N. A. A., Abd-Aziz, S., Hassan, M. A., & Karim, M. I. A. (2008). Research Journal of Microbiology, 3(9), 569–579.

    Article  CAS  Google Scholar 

  23. 23.

    Sun, Y., & Cheng, J. (2004). Transactions of the ASAE, 47(1), 343–349.

    CAS  Google Scholar 

  24. 24.

    Umi Kalsom, M. S., Ariff, A. B., & Zulkifli, H. S. (1997). Bioresource Technology, 62, 1–9.

    Article  CAS  Google Scholar 

  25. 25.

    Vikineswary, S., Abdullah, N., Renuvathani, M., Sekaran, M., Pandey, A., & Jones, E. B. G. (2005). Bioresource Technology, 97, 171–177.

    Article  Google Scholar 

  26. 26.

    Wood, T. M., & Bhat, K. M. (1988). Methods in Enzymology, 160, 87–112.

    Article  CAS  Google Scholar 

Download references


The authors thank Universiti Putra Malaysia for its financial support throughout this research project.

Author information



Corresponding author

Correspondence to S. Abd-Aziz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Linggang, S., Phang, L.Y., Wasoh, M.H. et al. Sago Pith Residue as an Alternative Cheap Substrate for Fermentable Sugars Production. Appl Biochem Biotechnol 167, 122–131 (2012).

Download citation


  • Sago pith residue
  • Crude enzyme
  • Trichoderma asperellum UPM1
  • Aspergillus fumigatus UPM2
  • Saccharification