Skip to main content
Log in

Evaluation of Bacterial Diversity in Palk Bay Sediments Using Terminal-Restriction Fragment Length Polymorphisms (T-RFLP)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Although it is known that Palk Bay sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their molecular diversity is still lacking. In the present study, bacterial diversity in Palk Bay sediments was characterized using the molecular method terminal-restriction fragment length polymorphisms (T-RFLP). The bacterial assemblages detected by T-RFLP analysis revealed that the nearshore sediment harbored high number of bacterial count, whereas the 2.5-m sediment harbored diverse and distinct bacterial composition with fine heterogeneity. The major bacterial groups detected in all the three sediment samples were Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria (including alpha (α), gamma (γ), delta (δ), and epsilon (ε)-Proteobacteria), and uncultured bacteria. This is the first study that reveals the presence of Bacteroidetes, delta (δ)- and epsilon (ε)-Proteobacteria, and uncultured bacteria in Palk Bay sediments. The hitherto unexplored wide microbial diversity of Palk Bay coastal area was unraveled in the current study through culture-independent approach. These data suggest that the continued use of cultivation-independent techniques will undoubtedly lead to the discovery of additional bacterial diversity and provide a direct means to learn more about the ecophysiology and biotechnological potential of Palk Bay coastal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rees, G. N., Baldwin, D. S., Watson, G. O., Perryman, S., & Nielsen, D. L. (2004). Antonie Van Leeuwenhoek, 86, 339–347.

    Article  Google Scholar 

  2. Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Microbiology Reviews, 59, 143–169.

    CAS  Google Scholar 

  3. Thies, J. E. (2007). Soil Science Society of America Journal, 71, 579–591.

    Article  CAS  Google Scholar 

  4. Handelsman, J., & Smalla, K. (2003). Current Opinion in Microbiology, 6, 271–273.

    Article  Google Scholar 

  5. Avaniss-Aghajani, E., Jones, K., Chapman, D., & Brunk, C. (1994). BioTechniques, 17, 144–149.

    CAS  Google Scholar 

  6. Kitts, C. L. (2001). Current Issues in Intestinal Microbiology, 2, 17–25.

    CAS  Google Scholar 

  7. Liu, W. T., Marsh, T. L., Cheng, H., & Forney, L. J. (1997). Applied and Environmental Microbiology, 63, 4516–4522.

    CAS  Google Scholar 

  8. Hiraishi, A., Iwasaki, M., & Shinjo, H. (2000). Journal of Bioscience and Bioengineering, 90, 148–156.

    CAS  Google Scholar 

  9. Dang, H., Li, J., Chen, M., Li, T., Zeng, Z., & Yin, X. (2009). World Journal of Microbiology and Biotechnology, 25, 179–188.

    Article  CAS  Google Scholar 

  10. Ludemann, H., Arth, I., & Liesack, W. (2000). Applied and Environmental Microbiology, 66, 754–762.

    Article  CAS  Google Scholar 

  11. Flynn, S. J., Löffler, F. E., & Tiedje, J. M. (2000). Environmental Science and Technology, 34, 1056–1061.

    Article  CAS  Google Scholar 

  12. Lukow, T., Dunfield, P. F., & Liesack, W. (2000). FEMS Microbiology Ecology, 32, 241–247.

    Article  CAS  Google Scholar 

  13. Sakamoto, M., Takeuchi, Y., Umeda, M., Ishikawa, I., & Benno, Y. (2003). Journal of Medical Microbiology, 52, 79–89.

    Article  CAS  Google Scholar 

  14. Gong, J., Si, W., Forster, R. J., Huang, R., Yu, H., Yin, Y., Yang, C., & Han, Y. (2007). FEMS Microbiology Ecology, 59, 147–157.

    Article  CAS  Google Scholar 

  15. Sait, L., Galic, M., Strugnell, R. A., & Janssen, P. H. (2003). Applied and Environmental Microbiology, 69, 2100–2109.

    Article  CAS  Google Scholar 

  16. Luna, G. M., Dell’Anno, A., Corinaldesi, C., Armeni, M., & Danovaro, R. (2009). International Microbiology, 12, 153–159.

    CAS  Google Scholar 

  17. Jørgensen, B. B., & Boetius, A. (2007). Nature Reviews Microbiology, 5, 770–781.

    Article  Google Scholar 

  18. Teske, A. P. (2006). Geomicrobiology Journal, 23, 357–368.

    Article  CAS  Google Scholar 

  19. D’Hondt, S., Rutherford, S., & Spivack, A. J. (2002). Science, 295, 2067–2070.

    Article  Google Scholar 

  20. Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 6578–6583.

    Article  CAS  Google Scholar 

  21. Dhillon, A., Teske, A., Dillon, J., Stahl, D. A., & Sogin, M. L. (2003). Applied and Environmental Microbiology, 69, 2765–2772.

    Article  CAS  Google Scholar 

  22. Marchesi, J. R., Weightman, A. J., Cragg, B. A., Parkes, R. J., & Fry, J. C. (2001). FEMS Microbiology Ecology, 34, 221–228.

    Article  CAS  Google Scholar 

  23. Gontang, E. A., Fenical, W., & Jensen, P. R. (2007). Applied and Environmental Microbiology, 73, 3272–3282.

    Article  CAS  Google Scholar 

  24. Kormas, K. A., Smith, D. C., Edgcomb, V., & Teske, A. (2003). FEMS Microbiology Ecology, 45, 115–125.

    Article  CAS  Google Scholar 

  25. Newberry, C. J., Webster, G., Cragg, B. A., Parkes, R. J., Weightman, A. J., & Fry, J. C. (2004). Environmental Microbiology, 6, 274–287.

    Article  Google Scholar 

  26. Tankéré, S. P. C., Bourne, D. G., Muller, F. L. L., & Torsvik, V. (2002). Environmental Microbiology, 4, 97–105.

    Article  Google Scholar 

  27. Nithya, C., Aravindraja, C., & Pandian, S. K. (2010). Research in Microbiology, 161, 293–304.

    Article  CAS  Google Scholar 

  28. Nithya, C., Begum, M. F., & Pandian, S. K. (2010). Applied Microbiology and Biotechnology, 88, 341–358.

    Article  CAS  Google Scholar 

  29. Nithya, C., & Pandian, S. (2010). Archives of Microbiology, 192, 843–854.

    Article  CAS  Google Scholar 

  30. Nithya, C., & Pandian, S. K. (2010). Microbiological Research, 165, 578–593.

    Article  CAS  Google Scholar 

  31. Nithya, C., Devi, M. G., & Pandian, S. K. (2011). Biofouling, 27, 519–528.

    Article  CAS  Google Scholar 

  32. Nithya, C., & Pandian, S. K. (2011). Marine Environmental Research, 71, 283–294.

    Article  CAS  Google Scholar 

  33. Thajuddin, N., & Subramanian, G. (2005). Current Science, 89, 47–57.

    CAS  Google Scholar 

  34. Vijayakumar, R., Muthukumar, C., Thajuddin, N., Panneerselvam, A., & Saravanamuthu, R. (2007). Actinomycetologica, 21, 59–65.

    Article  CAS  Google Scholar 

  35. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). Journal of Bacteriology, 173, 697–703.

    CAS  Google Scholar 

  36. Moyer, C. L., Tiedje, J. M., Dobbs, F. C., & Karl, D. M. (1996). Applied and Environmental Microbiology, 62, 2501–2507.

    CAS  Google Scholar 

  37. Michel, F.C. Jr., Sciarini, S. (2003). Abstr. N-289. Abstr. 103rd Gen. Meet. American Society Microbiology American Society for Microbiology, Washington, DC.31 2003.

  38. Scupham, A. J. (2007). FEMS Microbiology Ecology, 60, 136–147.

    Article  CAS  Google Scholar 

  39. Zhu, X. Y., Zhong, T., Pandya, Y., & Joerger, R. D. (2006). Applied and Environmental Microbiology, 68, 124–137.

    Article  Google Scholar 

  40. Zhang, R., Thiyagarajan, V., & Qian, P. Y. (2008). FEMS Microbiology Ecology, 65, 169–178.

    Article  CAS  Google Scholar 

  41. Clarke, K. R., & Warwick, R. M. (2001). Changes in marine communities: An approach to statistical analysis and interpretation. Plymouth, UK: Primer-E.

    Google Scholar 

  42. Kruskal, J. B. (1964). Psychometrika, 29, 1–27.

    Article  Google Scholar 

  43. Denaro, R., D’Auria, G., Di Marco, G., Genovese, M., Troussellier, M., Yakimov, M. M., & Giuliano, L. (2005). Environmental Microbiology, 7, 78–87.

    Article  CAS  Google Scholar 

  44. Bernbom, N., Nørrung, B., Saadbye, P., Mølbak, L., Vogensen, F. K., & Licht, T. R. (2006). Journal of Microbiological Methods, 66, 87–95.

    Article  CAS  Google Scholar 

  45. Dunbar, J., Ticknor, L. O., & Kuske, C. R. (2000). Applied and Environmental Microbiology, 66, 2943–2950.

    Article  CAS  Google Scholar 

  46. Hartmann, M., Frey, B., Kölliker, R., & Widmer, F. (2005). Journal of Microbiological Methods, 61, 349–360.

    Article  CAS  Google Scholar 

  47. Lueders, T., & Friedrich, M. W. (2003). Applied and Environmental Microbiology, 69, 320–326.

    Article  CAS  Google Scholar 

  48. Frey, J. C., Angert, E. R., & Pell, A. N. (2006). Journal of Microbiological Methods, 67, 9–19.

    Article  CAS  Google Scholar 

  49. Dunbar, J., Ticknor, L. O., & Kuske, C. R. (2001). Applied and Environmental Microbiology, 67, 190–197.

    Article  CAS  Google Scholar 

  50. Osborn, A. M., Moore, E. R. B., & Timmis, K. N. (2000). Environmental Microbiology, 2, 39–50.

    Article  CAS  Google Scholar 

  51. Marsh, T. L., Saxman, P., Cole, J., & Tiedje, J. (2000). Applied and Environmental Microbiology, 66, 3616–3620.

    Article  CAS  Google Scholar 

  52. Gray, J. P., & Herwig, R. P. (1996). Applied and Environmental Microbiology, 62, 4049–4059.

    CAS  Google Scholar 

  53. Jensen, P. R., Mincer, T. J., Williams, P. G., & Fenical, W. (2005). Antonie Van Leeuwenhoek, 87, 43–48.

    Article  CAS  Google Scholar 

  54. Stach, E. M., & Bull, A. T. (2005). Antonie Van Leeuwenhoek, 87, 3–9.

    Article  Google Scholar 

  55. Köchling, T., Lara-Martín, P., González-Mazo, E., Amils, R., & Sanz, J. L. (2011). International Microbiology, 14, 143–154.

    Google Scholar 

  56. Castle, D., & Kirchman, D. L. (2004). Limnology and Oceanography: Methods, 2, 303–314.

    Article  Google Scholar 

  57. Dobretsov, S., Dahms, H. U., & Qian, P. I. Y. (2006). Biofouling, 22, 43–54.

    Article  CAS  Google Scholar 

  58. Eccleston, G. P., Brooks, P. R., & Kurtböke, D. I. (2008). Marine Drugs, 6, 243–261.

    Article  CAS  Google Scholar 

  59. El-Gendy, M. M. A., Hawas, U. W., & Jaspars, M. (2000). The Journal of Antibiotics, 61, 379–386.

    Article  Google Scholar 

  60. Hong, K., Gao, A. H., Xie, Q. Y., Gao, H., Zhuang, L., Lin, H. P., Yu, H. P., Li, J., Yao, X. S., & Goodfellow, M. (2009). Marine Drugs, 7, 24–44.

    Article  CAS  Google Scholar 

  61. Imada, C. (2005). Antonie Van Leeuwenhoek, 87, 59–63.

    Article  CAS  Google Scholar 

  62. MikhaÄlov, V. V., Kuznetsova, T. A., & Eliakov, G. B. (1995). Bioorganicheskaia Khimiia, 21, 3–8.

    Google Scholar 

  63. Selvin, J., Shanmughapriya, S., Gandhimathi, R., Seghal Kiran, G., Rajeetha Ravji, T., Natarajaseenivasan, K., & Hema, T. A. (2009). Applied Microbiology and Biotechnology, 83, 435–445.

    Article  CAS  Google Scholar 

  64. Solanki, R., Khanna, M., & Lal, R. (2008). Indian Journal of Microbiology, 48, 410–431.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant from Department of Biotechnology (DBT), Government of India (GOI) (Grant No. BT/PR11994/ndb/52/134/2009). The authors gratefully acknowledge the computational and bioinformatics facility provided by the Alagappa University Bioinformatics Infrastructure Facility (funded by DBT, GOI; Grant No. BT/BI/25/001/2006). Financial support provided to Chari Nithya by Alagappa University in the form of Research Fellowship is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunmugiah Karutha Pandian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nithya, C., Pandian, S.K. Evaluation of Bacterial Diversity in Palk Bay Sediments Using Terminal-Restriction Fragment Length Polymorphisms (T-RFLP). Appl Biochem Biotechnol 167, 1763–1777 (2012). https://doi.org/10.1007/s12010-012-9578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9578-y

Keywords

Navigation