Skip to main content
Log in

Lysozyme Immobilized on Micro-Sized Magnetic Particles: Kinetic Parameters at Wine pH

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to use lysozyme as an anti-microbial agent during the winemaking process, hen egg-white lysozyme (LYZ) was covalently immobilized on two different micro-size magnetic particles (tosyl-activated and carboxylated, TSA and CA, respectively). A cell suspension of Oenococcus oeni, an oenological strain involved in the winemaking process, was utilized as LYZ substrate. Both a kinetic study and a study of the stability of free and immobilized LYZ were performed in McIlvane buffer at pH 3.2, that is the average minimum pH value in wine. The activity and kinetic parameters measured for the free LYZ at pH 3.2 are lower than those reported at the optimum pH (4.5); however the residual activity at pH 3.2 is sufficient to be of interest for further immobilization and applications in winemaking. All kinetic parameters of both biocatalysts (LYZ-CA and LYZ-TSA) are altered after immobilization, probably due to the structural modifications in the active site caused by covalent attachment to the supports. The half-life calculated at 25 °C was 39 h for free LYZ, while it increased to 280 and 134 h for LYZ-TSA and LYZ-CA, respectively. This result indicates that immobilization improves the enzyme stability and that LYZ can be utilized in wine applications in its immobilized forms. In addition, LYZ-TSA seems to be the best biocatalyst for further applications in winemaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

OD360nm :

Optical density at 360 nm

U:

Enzyme units corresponding to 0.001/min OD360 nm decrease

V max :

Maximal initial enzyme activity

K M :

Michealis–Menten constant

k cat :

Turnover number

k a :

Specificity constant (k cat/K M)

FSA:

Specific activity of free lysozyme

ISA:

Specific activity of immobilized lysozyme

RA:

Relative activity

A t :

Lysozyme activity measured at the t time

A 0 :

Initial lysozyme activity

k i :

Inactivation constant

t :

Reaction time

DW:

Dry weight

References

  1. Proctor, V. A., & Cunningham, F. E. (1988). Critical Reviews in Food Science, 26, 359–395.

    Article  CAS  Google Scholar 

  2. Cunningham, F. E., Proctor, V. A., & Goetsch, S. J. (1991). World’s Poultry Science Journal, 47, 141–163.

    Article  Google Scholar 

  3. Tirelli, A., & De Noni, I. (2007). Food Chemistry, 105, 1564–1570.

    Article  CAS  Google Scholar 

  4. Blättel, V., Wirth, K., Claus, H., Schlott, B., Pfeiffer, P., & König, H. (2009). Applied Microbiology and Biotechnology, 83, 39–848.

    Article  Google Scholar 

  5. Dicks, L. M. T., Dellaglio, F., & Collins, M. D. (1995). International Journal of Systematic Bacteriology, 45, 395–397.

    Article  CAS  Google Scholar 

  6. Gerbaux, V., Meistermann, E., Cottereau, P., Barriere, C., Cuinier, C., Berger, J. L., & Villa, A. (1999). Bull OIV, 72, 348–373.

    CAS  Google Scholar 

  7. Weber, P., Kratzin, H., Brockow, K., Ring, J., Steinhart, H., & Paschke, A. (2009). Molecular Nutrition & Food Research, 53, 1469–1477.

    Article  CAS  Google Scholar 

  8. Frémont, S., Kanny, G., Nicolas, J. P., & Moneret-Vautrin, D. A. (1997). Allergy, 52, 224–228.

    Article  Google Scholar 

  9. Camp, P., Pichler, W. J., & De Weck, A. L. (1988). New England and Regional Allergy Proceedings, 9, 254.

    Google Scholar 

  10. Malmheden, Y. I. (2004). Acta Aliment, 33, 347–357.

    Article  Google Scholar 

  11. Appendini, P., & Hotchkiss, J. H. (1997). Packaging Technology and Science, 10, 271–279.

    Article  CAS  Google Scholar 

  12. Wu, Y., & Daeschel, M. A. (2007). Journal of Food Science, 72, 369–374.

    Article  Google Scholar 

  13. Crapisi, A., Lante, A., Pasini, G., & Spettoli, P. (1993). Process Biochemistry, 28, 17–21.

    Article  CAS  Google Scholar 

  14. Conte, A., Buonocore, G. G., Sinigaglia, M., & Del Nobile, M. A. (2007). Journal of Agricultural Engineering Research, 78, 741–745.

    CAS  Google Scholar 

  15. Nakamura, S., Kato, A., & Kobayashi, K. (1991). Journal of Agricultural and Food Chemistry, 39, 647–650.

    Article  CAS  Google Scholar 

  16. Chang, Y. K., & Chu, L. (2007). Biochemical Engineering Journal, 35, 37–47.

    Article  CAS  Google Scholar 

  17. Crapisi, A., Lante, A., Pasini, G., & Spettoli, P. (1993). Process Biochemistry, 28, 17–21.

    Article  CAS  Google Scholar 

  18. Gomm, J. J., Browne, P. J., Coope, R. C., Liu, Q. Y., Buluwela, L., & Coombes, R. C. (1995). Analytical Biochemistry, 226, 91–99.

    Article  CAS  Google Scholar 

  19. Roath, S. (1993). Biological and biomedical aspects of magnetic fluid technology. Journal of Magnetism and Magnetic Materials, 122, 329–334.

    Article  CAS  Google Scholar 

  20. Dresco, P. A., Zaitsev, V. S., Gambino, R. J., & Chu, B. (1999). Langmuir, 15, 1945–1951.

    Article  CAS  Google Scholar 

  21. Liu, X., Guan, Y., Shen, R., & Liu, H. (2005). Journal of Chromatography B, 822, 91–97.

    Article  CAS  Google Scholar 

  22. Tiwari, A., Punshon, G., Kidane, A., Hamilton, G., & Seifalian, A. M. (2003). Cell Biology and Toxicology, 19, 265–272.

    Article  CAS  Google Scholar 

  23. Nilsson, K., & Mosbach, K. (1980). European Journal of Biochemistry, 112, 397–402.

    Article  CAS  Google Scholar 

  24. Chen, J. P., & Chen, Y. C. (1997). Bioresource Technology, 60, 231–237.

    Article  CAS  Google Scholar 

  25. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  26. Pitotti, A., Dal Bo, A., & Boschelle, O. (1991). Journal of Food Biochemistry, 15, 393–403.

    Article  Google Scholar 

  27. Gerbaux, V., Villa, A., Monamy, C., & Bertrand, A. (1997). American Journal of Enology and Viticulture, 48, 49–54.

    CAS  Google Scholar 

  28. Pilatte, E., Nygaard, M., Gao, Y. C., Krentz, S., Power, J., & Lagarde, G. (2000). Revue Française d’Oenologie, 185, 26–29.

    CAS  Google Scholar 

  29. Zacchigna, M., Di Luca, G., Lassiani, L., Varnavas, A., Pitotti, A., & Boccù, E. (1999). Applied Biochemistry and Biotechnology, 76, 171–181.

    Article  CAS  Google Scholar 

  30. Delfini, C., Cersosimo, M., Del Prete, V., Strano, M., Gaetano, G., Pagliara, A., & Ambrò, S. (2004). Journal of Agricultural and Food Chemistry, 52, 1861–1866.

    Article  CAS  Google Scholar 

  31. Kirby, A. J. (2001). Natural Structural Biology, 8, 737–739.

    Article  CAS  Google Scholar 

  32. Blake, C. C. F., Jhonson, L. N., Mair, G. A., North, A. C. T., Phillips, D. C., & Sharma, V. R. (1967). Proceedings of the Royal Society of London - Series B: Biological Sciences, 167378

  33. Levashov, P. A., Sedov, S. A., Shipovskov, S., Belogurova, N. G., & Levashov, A. V. (2010). Analytical Chemistry, 82, 2161–2163.

    Article  CAS  Google Scholar 

  34. Glazer, A. N., Barel, A., Howard, J. B., & Brown, D. M. (1969). Journal of Biological Chemistry, 244, 3583–3539.

    CAS  Google Scholar 

  35. Peng, Z. G., Hidajat, K., & Uddin, M. S. (2004). Colloids and Surfaces B, 35, 169–174.

    Article  CAS  Google Scholar 

  36. Zacchigna, M., Di Luca, G., Lassiani, L., Varnavas, A., Pitotti, A., & Boccù, E. (1999). Applied Biochemistry and Biotechnology, 76, 171–181.

    Article  CAS  Google Scholar 

  37. Chen, S. H., Yen, Y. H., Wang, C. L., & Wang, S. L. (2003). Enzyme and Microbial Technology, 33, 643–649.

    Article  CAS  Google Scholar 

  38. Wang, S. L., & Chio, S. H. (1998). Enzyme and Microbial Technology, 22, 634–640.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by financial backing of the Italian Ministry of Agriculture, Food and Forestry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Liburdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liburdi, K., Straniero, R., Benucci, I. et al. Lysozyme Immobilized on Micro-Sized Magnetic Particles: Kinetic Parameters at Wine pH. Appl Biochem Biotechnol 166, 1736–1746 (2012). https://doi.org/10.1007/s12010-012-9577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9577-z

Keywords

Navigation