Skip to main content

Advertisement

Log in

Production of Alkaline Protease by Bacillus altitudinis GVC11 using Castor Husk in Solid-State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Castor (Ricinus communis L.) is an important oil seed crop having its main cultivated area in India, China, and Brazil in dry land farming. Castor husk is generated as waste in castor oil production. Use of castor husk waste as substrate is studied for alkaline protease production by Bacillus altitudinis GVC11 in solid-state fermentation. Various parameters like moisture content, incubation period, particle size, effect of carbon and nitrogen sources are studied and optimized for enzyme production. Highest enzyme production of 419,293 units per gram husk is obtained. Cost of enzyme production can be reduced by using castor husk as substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anisworth, S. J. (1994). Soap and detergents. Chemical and Engineering News, 72, 34–59.

    Article  Google Scholar 

  2. Fujiwara, N. (1993). Journal of Biotechnology, 30, 245–256.

    Article  CAS  Google Scholar 

  3. Outtrup, H., Dambmann, C., Christiansen, M., Aaslying, D. A. (1995). US Patent Number 5466594.

  4. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59(1), 15–32.

    Article  CAS  Google Scholar 

  5. Ellaiah, P., Adinarayana, K., Rajyalaxmi, P., & Srinivasulu, B. (2003). Asian Journal of Microbiology Biotechnology & Environmental Sciences, 5, 49–54.

    CAS  Google Scholar 

  6. Beg, Q. K., & Gupta, R. (2003). Enyme and Microbial Technology, 32, 294–304.

    Article  CAS  Google Scholar 

  7. Joo, H. S., Kumar, C. G., Park, G. C., Palik, S. R., & Chang, C. S. (2004). Process Biochemistry, 39, 1441–1447.

    Article  CAS  Google Scholar 

  8. Mahalaxmi, Y., Sathish, T., & Prakasham, R. S. (2009). Letters in Applied Microbiology, 49, 533–538.

    Article  CAS  Google Scholar 

  9. Sathish, T., & Prakasham, R. S. (2010). Journal of Chemical Technology and Biotechnology, 85, 50–58.

    Article  CAS  Google Scholar 

  10. Subba Rao, Ch, Sathish, T., Ravichandra, P., & Prakasham, R. S. (2009). Process Biochemistry, 44, 262–268.

    Article  CAS  Google Scholar 

  11. Hymavathi, M., Sathish, T., Subba Rao, Ch, & Prakasham, R. S. (2009). Applied Biochemistry and Biotechnology, 159, 191–198.

    Article  CAS  Google Scholar 

  12. Mahalakshmi, Y., Sathish, T., Subba Rao, Ch, & Prakasham, R. S. (2010). Process Biochemistry, 45, 47–53.

    Article  Google Scholar 

  13. Prakasham, R. S., Subba Rao, Ch, & Sarma, P. N. (2006). Bioresource Technology, 97, 1449–1454.

    Article  CAS  Google Scholar 

  14. Sathish, T., Lakshmi, G. S., Subba Rao, Ch, Brahmaiah, P., & Prakasham, R. S. (2008). Letters in Applied Microbiology, 47, 256–262.

    Article  CAS  Google Scholar 

  15. Pandey, A., Soccol, C. R., Nigam, P., Brand, D., Mohan, R., & Roussos, S. (2000). Biochemical Engineering Journal, 6, 153–162.

    Article  CAS  Google Scholar 

  16. Gessesse, A. (1997). Bioresource Technology, 62, 59–61.

    Article  CAS  Google Scholar 

  17. Johnvesly, B., Manjunath, B. R., & Naik, G. R. (2002). Bioresource Technology, 82, 61–64.

    Article  CAS  Google Scholar 

  18. Aikat, K., & Bhattacharyya, B. C. (2000). Process Biochemistry, 35, 907–914.

    Article  CAS  Google Scholar 

  19. Mitra, P., Chakraverty, R., & Chandra, A. L. (1994). Journal of Scientific and Industrial Research, 55, 439–442.

    Google Scholar 

  20. Ortiz-Vazquez, E., Granados-Baeza, M., & Rivera-Munoz, G. (1993). Biotechnology Advances, 11, 409–416.

    Article  CAS  Google Scholar 

  21. Vijay Kumar, E., Srijana, M., Kiran Kumar, K., Hari Krishna, N., & Gopal Reddy. (2010). Bioprocess and Biosystems Engineering, 34, 403–409.

    Article  Google Scholar 

  22. Robert, J. S. (1967). Industrial Aspects. In: R. L. Whistler, & E. F. Paschall (Eds.), Starch: Chemistry and Technology (Vol. 2, Chapter 25, pp. 571–571). London: Academic Press.

  23. Nagamine, K., Murashima, K., Kato, T., Shimoi, H., & Ito, K. (2003). Bioscience, Biotechnologyand Biochemistry, 67, 2194–2202.

    Article  CAS  Google Scholar 

  24. Sindhu, R., Suprabha, G. N., & Shashidhar, S. (2009). African Journal of Microbiology, 3(9), 515–522.

    CAS  Google Scholar 

  25. Murthy, P. S., & Madhava Naidu, M. (2010). World Applied Sciences Journal, 8(2), 199–205.

    CAS  Google Scholar 

  26. Varun Bhaskar, Jones Raj, T. R., Kandasamy, S. K. J., Vijay Kumar, P., & Anant Achary. (2008). African Journal of Biotechnology, 7(13), 2286–2291.

    Google Scholar 

  27. Elibol, M., & Moreira, A. R. (2005). Process Biochemistry, 40(5), 1951–1956.

    Article  CAS  Google Scholar 

  28. Pandey, A. (1994). In: A. Pandey (Ed.), Solid state fermentation (pp. 3–10). New Delhi: Wiley Eastern Publishers.

  29. Pandey, A., Soccol, C. R., & Mitchell, D. (2000). Process Biochemidtry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  30. Nigam, P., & Singh, D. (1994). Journal of Basic Microbiology, 34, 405–422.

    Article  CAS  Google Scholar 

  31. Ramesh, M. V., & Lonsane, B. K. (1990). Applied Microbiology and Biotechnology, 33, 501–505.

    Article  CAS  Google Scholar 

  32. Perez-Guerra, N., Torrado-Agrasar, A., Lopez-Macias, C., & Pastrana, L. (2003). Electronic Jounal of Environmental, Agricultural and Food Chemistry, 2, 343.

    Google Scholar 

  33. Divakar, G., Sunitha, M., Vasu, P., Udaya Shanker, P., & Ellaiah, P. (2006). Indian Journal of Biotechnology, 5, 80–83.

    CAS  Google Scholar 

  34. Shafique, S., Asgher, M., Sheikh, M. A., & Asad, M. J. (2004). International Journal of Agriculture and Biology, 06(3), 488–491.

    Google Scholar 

  35. Singh, M., Saurav, K., Srivastava, N., & Kannabiran, K. (2010). Current Research Journal of Biological Sciences, 2(4), 241–245.

    CAS  Google Scholar 

  36. Chaturvedi, M., Singh, M., Chugh, M. R., & Rahul, K. (2010). International Journal of Biotechnology and Biochemistry, 6(4), 585–594.

    Google Scholar 

  37. Singh, R. K., Kumar, S., Kumar, S. (2009). Current Trends in Biotechnology and pharmacy, 3(2), 172–180.

    Google Scholar 

  38. Malathi, S., & Chakraborty, R. (1991). Applied and Environmental Microbiology, 57, 712–716.

    CAS  Google Scholar 

  39. Sen, S., & Satyanarayana, T. (1993). Indian Juornal Microbiology, 33, 43–47.

    Google Scholar 

  40. Frankena, J., Koningstein, G. M., Van Verseveld, H. W., & Stouthamer, A. H. (1986). Applied Microbiology, 24, 106–112.

    CAS  Google Scholar 

  41. Kole, M. M., Draper, I., & Gerson, D. F. (1998). Journal of Chemical Technology and Biotechnology, 41, 197–206.

    Google Scholar 

Download references

Acknowledgment

The authors thank the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for financial assistance to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhuri, A., Nagaraju, B., Harikrishna, N. et al. Production of Alkaline Protease by Bacillus altitudinis GVC11 using Castor Husk in Solid-State Fermentation. Appl Biochem Biotechnol 167, 1199–1207 (2012). https://doi.org/10.1007/s12010-012-9570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9570-6

Keywords

Navigation