Skip to main content
Log in

Production of Thermophilic Endo-β-1,4-xylanases by Aspergillus fumigatus FBSPE-05 Using Agro-industrial By-products

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present paper, endo-β-1,4-xylanase production by Aspergillus fumigatus was evaluated in solid-state fermentation using low-cost substrates such as sugarcane bagasse (SCB), brewer’s spent grain (BSG), and wheat bran (WB). The partial characterization of the crude enzyme was also performed. In the experimental conditions, the highest levels of endo-β-1,4-xylanase production by A. fumigatus FBSPE-05 occurred within 8 days incubation when using SCB/liquid medium at 1:2 ratio (219.5 U g−1) and 4 days incubation when using WB/liquid medium at 1:1 ratio (215.6 U g−1). Crude enzyme from this last condition was used to enzyme characterization, showing best enzyme activity at 60 °C and pH 6.0, which suggests a thermophilic endoxylanase. The crude enzyme retained 73% of its activity after 1 h at 60 °C, and zymogram has shown three bands of endo-β-1,4-xylanase activity, with different molecular masses. A. fumigatus FBSPE-05 was able to grow and produce good levels of endo-β-1,4-xylanase using agro-industrial by-products, making this strain worthy for further investigation. To our knowledge, this is the first study reporting the use of SCB and/or BSG as sole substrates for endoxylanase production by solid-state fermentation using A. fumigatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sánchez, C. (2009). Biotechnology Advances, 27, 185–194. doi:10.1016/j.biotechadv.2008.11.001.

    Google Scholar 

  2. Salles, B. C., Medeiros, R. G., Bao, S. N., Silva, F. G., Jr., & Filho, E. X. F. (2005). Process Biochemistry, 40, 343–349. doi:10.1016/j.procbio.2004.01.008.

    CAS  Google Scholar 

  3. Nair, S. G., Sindhu, R., & Shashidhar, S. (2008). African Journal of Microbiology Research, 2, 82–86.

    Google Scholar 

  4. Banerjee, G., Scott-Craig, J., & Walton, J. D. (2010). Bioenergy Research, 3, 82–92. doi:10.1007/s12155-009-9067-5.

    Google Scholar 

  5. Amita, R. S., Shah, R. K., & Madamwar, D. (2006). Bioresource Technology, 97, 2047–2053. doi:10.1016/j.biortech.2005.10.006.

    Google Scholar 

  6. Lakshmi, G. S., Rao, C. S., Rao, R. S., Hobbs, P. J., & Prakasham, R. S. (2009). Biochemical Engineering Journal, 48, 51–57.

    CAS  Google Scholar 

  7. Panagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Industrial Crops and Products, 18, 37–45. doi:10.1016/S0926-6690(03)00018-9.

    CAS  Google Scholar 

  8. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Bioresource Technology, 74, 69–80. doi:10.1016/S0960-8524(99)00142-X.

    CAS  Google Scholar 

  9. Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Journal of Cereal Science, 43, 1–14. doi:10.1016/j.jcs.2005.06.001.

    CAS  Google Scholar 

  10. Maes, C., & Delcour, J. A. (2001). Journal of Cereal Science, 34, 29–35. doi:10.1006/jcrs.2001.0377.

    CAS  Google Scholar 

  11. Terrasan, C. R. F., Temer, B., Duarte, M. C. T., & Carmona, E. C. (2010). Bioresource Technology, 101, 4139–4143. doi:10.1016/j.biortech.2010.01.011.

    CAS  Google Scholar 

  12. Grigorevski-Lima, A. L., Da Vinha, F. N. M., Souza, D. T., Bispo, A. S. R., Bon, E. P. S., Coelho, R. R. R., & Nascimento, R. P. (2009). Applied Biochemistry and Biotechnology, 155, 321–329. doi:10.1007/s12010-008-8482-y.

    CAS  Google Scholar 

  13. Nascimento, R. P., Coelho, R. R. R., Marques, S., Alves, L., Gírio, F. M., Bon, E. P. S., & Amaral-Collaço, M. T. (2002). Enzyme and Microbial Technology, 31, 549–555. doi:10.1016/s0141-0229(02)00150-3.

    CAS  Google Scholar 

  14. Da Vinha, F. N. M., Gravina-Oliveira, M. P., Franco, M. N., Macrae, A., Bon, E. P. S., Nascimento, R. P., & Coelho, R. R. R. (2011). Applied Biochemistry and Biotechnology, 164, 256–267. doi:10.1007/s12010-010-9132-8.

    CAS  Google Scholar 

  15. Anthony, T., Raj, K. C., Rajendran, A., & Gunasekaran, P. (2003). Journal of Bioscience and Bioengineering, 96, 394–396. doi:10.1016/S1389-1723(03)90143-5.

    CAS  Google Scholar 

  16. Silva, C., Sousa, M., Puls, J., & Filho, E. X. F. (1999). Revista de Microbiologia, 30, 114–119. doi:10.1590/S0001-37141999000200005.

    Google Scholar 

  17. Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Bruton, C. J., Kieser, H. M., et al. (1985). Genetic manipulation of Streptomyces. A laboratory manual. Norwich: The John Innes Institute.

    Google Scholar 

  18. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270. doi:10.1016/0168-1656(92)90074-J.

    CAS  Google Scholar 

  19. Miller, L. (1959). Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.

    CAS  Google Scholar 

  20. Laemmli, U. K. (1970). Nature, 227, 680–685.

    CAS  Google Scholar 

  21. Cezar, T., & Mrsa, V. (1996). Enzyme and Microbial Technology, 19, 289–296. doi:10.1016/0141-0229(95)00248-0.

    Google Scholar 

  22. Nawel, B., Said, B., Estelle, C., Hakim, H., & Duchiron, F. (2011). Process Biochemistry, 46, 519–525. doi:10.1016/j.procbio.2010.10.003.

    CAS  Google Scholar 

  23. Sá-Pereira, P., Mesquita, A., Duarte, J., Barros, M. R. A., & Costa-Ferreira, M. (2002). Enzyme and Microbial Technology, 30, 924–933. doi:10.1016/S0141-0229(02)00034-0.

    Google Scholar 

  24. Yang, S. Q., Yan, Q. J., Jiang, Z. Q., Li, L. T., Tian, H. M., & Wang, Y. Z. (2006). Bioresource Technology, 97, 1794–1800. doi:10.1016/j.biortech.2005.09.007.

    CAS  Google Scholar 

  25. Thiagarajan, S., Jeya, M., & Gunasekaran, P. (2006). World Journal of Microbiology and Biotechnology, 22, 487–492. doi:10.1007/s11274-005-9061-9.

    CAS  Google Scholar 

  26. Ramesh, M. V., & Lonsane, B. K. (1990). Applied Microbiology and Biotechnology, 33, 501–505. doi:10.1007/BF00172541.

    CAS  Google Scholar 

  27. Gawande, P. V., & Kamat, M. Y. (1999). Journal of Applied Microbiology, 87, 511–519. doi:10.1046/j.1365-2672.1999.00843.x.

    CAS  Google Scholar 

  28. Savitha, S., Sadhasivam, S., & Swaminathan, K. (2007). Bulletin of Environmental Contamination and Toxicology, 78, 217–221. doi:10.1007/s00128-007-9132-8.

    CAS  Google Scholar 

  29. Peixoto-Nogueira, S. C., Michelin, M., Betini, J. H. A., Jorge, J. A., Terenzi, H. F., & Polizeli, M. M. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 149–155. doi:10.1007/s10295-008-0482-y.

    Google Scholar 

  30. Bajaj, B. K., & Abbass, M. (2011). Biotech, 1, 161–171. doi:10.1007/s13205-011-0020-x.

    Google Scholar 

  31. Carmona, E. C., Fialho, M. B., Buchgnani, E. B., Coelho, G. D., Brocheto-Braga, M. R., & Jorge, J. A. (2005). Process Biochemistry, 40, 359–364. doi:10.1016/j.procbio.2004.01.010.

    CAS  Google Scholar 

  32. Heck, J. X., Flores, S. H., Hertz, P. F., & Ayub, M. A. Z. (2005). Process Biochemistry, 40, 107–112. doi:10.1016/j.procbio.2003.11.044.

    CAS  Google Scholar 

  33. Fengxia, L., Mei, L., Zhaoxin, L., Xiaomei, B., Haizhen, Z., & Yi, W. (2008). Bioresource Technology, 99, 5938–5941. doi:10.1016/j.biortech.2007.10.051.

    Google Scholar 

  34. Puchart, V., Vrsanká, M., Svoboda, P., Pohl, J., Ögel, Z. B., & Biely, P. (2004). Biochimica et Biophysica Acta, 1674, 239–250. doi:10.1016/j.bbagen.2004.06.022.

    CAS  Google Scholar 

  35. Lenartovicz, V., Souza, C. G. M., Moreira, F. G., & Peralta, R. M. (2002). Journal of Basic Microbiology, 42, 415–421. doi:10.1016/S0032-9592(02)00261-3.

    Google Scholar 

Download references

Acknowledgments

The authors thank Zozilene Nascimento Santos Teles for technical support and Fundação Oswaldo Cruz for the identification of the fungal strain. This work was financially supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível superior (CAPES), and Financiadora de Estudos e Projetos (FINEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, D.T., Bispo, A.S.R., Bon, E.P.S. et al. Production of Thermophilic Endo-β-1,4-xylanases by Aspergillus fumigatus FBSPE-05 Using Agro-industrial By-products. Appl Biochem Biotechnol 166, 1575–1585 (2012). https://doi.org/10.1007/s12010-012-9563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9563-5

Keywords

Navigation