Skip to main content
Log in

Liquid Formulations for Long-Term Storage of Monoclonal IgGs

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Proteins like immunoglobulin (IgGs) are prone to degradation by a variety of pathways. In this study, a stabilizing formulation for long-term storage of a panel of seven monoclonal IgGs was found using differential scanning calorimetry (DSC). In the chosen formulations, the IgGs were subjected to stress, accelerated and real-time storage, and analyzed by size exclusion chromatography to determine fragment and aggregate content, and fluorescence-activated cell sorting to measure immunoreactivity. All IgGs showed the greatest conformational stability near their isoelectric point which was enhanced by adding sorbitol, sucrose, glycine, and sodium chloride. Optimized formulations, found by DSC, containing 20 % sorbitol and 1 M glycine prevented IgG aggregation and fragmentation and conserved immunoreactivity against shear stress, multiple freeze–thaw cycles, accelerated storage at 37 °C, and 12 months storage at 4 and −20 °C. Relatively poor thermal stability of the antigen-binding fragment domain was shown to limit storage stability of IgGs. This study confirms the predictive power of DSC to find storage formulations which protect IgGs during stress and long-term storage from aggregation and degradation. Liquid formulations found in this study may have a broad utility for other IgGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. An, Z. (2010). Protein & Cell, 1, 319–330.

    Article  CAS  Google Scholar 

  2. Wang, W., Nema, S., & Teagarden, D. (2010). International Journal of Pharmaceutics, 390, 89–99.

    Article  CAS  Google Scholar 

  3. Eng, M., Ling, V., Briggs, J. A., Souza, K., Canova-Davis, E., Powell, M. F., & De Young, L. R. (1997). Analytical Chemistry, 69, 4184–4190.

    Article  CAS  Google Scholar 

  4. Schrier, J. A., Kenley, R. A., Williams, R., Corcoran, R. J., Kim, Y., Northey, R. P., Jr., D’Augusta, D., & Huberty, M. (1993). Pharmaceutical Research, 10, 933–944.

    Article  CAS  Google Scholar 

  5. Robert, F., Bierau, H., Rossi, M., Agugiaro, D., Soranzo, T., Broly, H., & Mitchell-Logean, C. (2009). Biotechnology and Bioengineering, 104, 1132–1141.

    Article  CAS  Google Scholar 

  6. Vanerp, R., Adorf, M., Vansommeren, A. P. G., & Gribnau, T. C. J. (1991). Journal of Biotechnology, 20, 249–262.

    Article  CAS  Google Scholar 

  7. Fradkin, A. H., Carpenter, J. F., & Randolph, T. W. (2009). Journal of Pharmaceutical Sciences, 98, 3247–3264.

    Article  CAS  Google Scholar 

  8. van Beers, M. M. C., Jiskoot, W., & Schellekens, H. (2010). Journal of Interferon and Cytokine Research, 30, 767–775.

    Article  Google Scholar 

  9. Lee, J. C., & Timasheff, S. N. (1981). Journal of Biological Chemistry, 256, 7193–7201.

    CAS  Google Scholar 

  10. Xie, G., & Timasheff, S. N. (1997). Protection Science, 6, 211–221.

    Article  CAS  Google Scholar 

  11. Gekko, K., & Timasheff, S. N. (1981). Biochemistry, 4, 4667–4676.

    Article  Google Scholar 

  12. Arakawa, T., & Timasheff, S. N. (1982). Biochemistry, 21, 6545–6552.

    Article  CAS  Google Scholar 

  13. Arakawa, T., & Timasheff, S. N. (1983). Archives of Biochemistry and Biophysics, 224, 169–177.

    Article  CAS  Google Scholar 

  14. Han, Y., Jin, B. S., Lee, S. B., Sohn, Y., Joung, J. W., & Lee, J. H. (2007). Archives of Pharmacal Research, 30, 1124–1131.

    Article  CAS  Google Scholar 

  15. Ohtake, S., Kita, Y., & Arakawa, T. (2011). Advanced Drug Delivery Reviews, 63, 1053–1073.

    Article  CAS  Google Scholar 

  16. Tiwari, A., & Bhat, R. (2006). Biophysical Chemistry, 124, 90–99.

    Article  CAS  Google Scholar 

  17. Chen, B., Bautista, R., Yu, K., Zapata, G. A., Mulkerrin, M. G., & Chamow, S. M. (2003). Pharmaceutical Research, 20, 1952–1960.

    Article  CAS  Google Scholar 

  18. Kerwin, B. A., Heller, M. C., Levin, S. H., & Randolph, T. W. (1998). Journal of Pharmaceutical Sciences, 87, 1062–1068.

    Article  CAS  Google Scholar 

  19. Cramer, M., Frei, R., Sebald, A., Mazzoletti, P., & Maeder, W. (2009). Vox Sanguinis, 96, 219–225.

    Article  CAS  Google Scholar 

  20. Kendrick, B. S., Chang, B. S., Arakawa, T., Peterson, B., Randolph, T. W., Manning, M. C., & Carpenter, J. F. (1997). PNAS, 94, 11917–11922.

    Article  CAS  Google Scholar 

  21. Remmele, R. L., Nightlinger, N. S., Srinivasan, S., & Gombotz, W. R. (1998). Pharmaceutical Research, 15, 9.

    Article  Google Scholar 

  22. Back, J. F., Oakenfull, D., & Smith, M. B. (1979). Biochemistry, 18, 5191–5196.

    Article  CAS  Google Scholar 

  23. Lin, T. Y., & Timasheff, S. N. (1996). Protection Science, 5, 372–381.

    Article  CAS  Google Scholar 

  24. Kreilgaard, L., Jone, L. S., Randolph, T. W., Frokjaer, S., Flink, J. M., Manning, M. C., & Carpenter, J. F. (1998). Journal of Pharmaceutical Sciences, 87, 1597–1603.

    CAS  Google Scholar 

  25. Wang, W., Wang, Y. J., & Wand, D. Q. (2008). International Journal of Pharmaceutics, 347, 31–38.

    Article  CAS  Google Scholar 

  26. Ertel, K. D., & Carstensen, J. T. (1990). International Journal of Pharmaceutics, 61, 9–14.

    Article  CAS  Google Scholar 

  27. Wang, W., Singh, S., Zeng, D. L., King, K., & Nema, S. (2007). Journal of Pharmaceutical Sciences, 96, 1–26.

    Article  CAS  Google Scholar 

  28. Vermeer, A. W. P., & Norde, W. (2000). Biophysical Journal, 78, 394–404.

    Article  CAS  Google Scholar 

  29. Garber, E., & Demarest, S. J. (2007). Biochemical and Biophysical Research Communications, 355, 751–757.

    Article  CAS  Google Scholar 

  30. Ionescu, R. M., Vlasak, J., Price, C., & Kirchmeier, M. (2008). Journal of Pharmaceutical Sciences, 97, 1414–1426.

    Article  CAS  Google Scholar 

  31. Chen, B. L., & Arakawa, T. (1996). Journal of Pharmaceutical Sciences, 85, 419–426.

    Article  CAS  Google Scholar 

  32. Ahrer, K., Buchacher, A., Iberer, G., & Jungbauer, A. (2006). Journal of Biochemical and Biophysical Methods, 66, 73–86.

    Article  CAS  Google Scholar 

  33. Szenczi, Á., Kardos, J., Medgyesi, G. A., & Závodszky, P. (2006). Biologicals, 34, 5–14.

    Article  CAS  Google Scholar 

  34. Choo, A. B., Tan, H. L., Ang, S. N., Fong, W. J., Chin, A., Lo, J., Zheng, L., Hentze, H., Philp, R. J., Oh, S. K., & Yap, M. (2008). Stem Cells, 26, 1454–1463.

    Article  CAS  Google Scholar 

  35. Ho, S. C. L., Bardor, M., Feng, H., Mariati, Tong, Y. W., Song, Z., Yap, M. G. S., & Yang, Y. (2012). Journal of Biotechnology, 157, 130-139.

  36. Choo, A., Padmanabhan, J., Chin, A., Fong, W. J., & Oh, S. K. W. (2006). Journal of Biotechnology, 122, 130–141.

    Article  CAS  Google Scholar 

  37. Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wikstroem, C., Wold, S. (2008). Umetrics Academy.

  38. He, F., Hogan, S., Latypov, R. F., Narhi, L. O., & Razinkov, V. I. (2010). Journal of Pharmaceutical Sciences, 99, 1707–1720.

    CAS  Google Scholar 

  39. Bhambhani, A., Kissmann, J. M., Joshi, S. B., Volkin, D. B., Kashi, R. S., & Middaugh, C. R. (2011). Journal of Pharmaceutical Sciences, 101, 1120–1135.

    Article  Google Scholar 

  40. Zheng, J. Y., & Janis, L. J. (2006). International Journal of Pharmaceutics, 308, 46–51.

    Article  CAS  Google Scholar 

  41. Li, S., Schöneich, C., & Borchardt, R. T. (1995). Biotechnology and Bioengineering, 48, 490–500.

    Article  CAS  Google Scholar 

  42. Grinberg, V. Y., Burova, T. V., Grinberg, N. V., Shcherbakova, T. A., Guranda, D. T., Chilov, G. G., & Svedas, V. K. (2008). Biochimica et Biophysica Acta, 1784, 736–746.

    Article  CAS  Google Scholar 

  43. Pace, C. N., Laurents, D. V., & Thomson, J. A. (1990). Biochemistry, 29, 2564–2572.

    Article  CAS  Google Scholar 

  44. Pace, C. N., Grimsley, G. R., & Scholtz, J. M. (2009). Journal of Biological Chemistry, 284, 13285–13289.

    Article  CAS  Google Scholar 

  45. González, M., Murature, D. A., & Fidelio, G. D. (1995). Vox Sanguinis, 68, 1–4.

    Article  Google Scholar 

  46. Arakawa, T., Ejima, D., Tsumoto, K., Obeyama, N., Tanaka, Y., Kita, Y., & Timasheff, S. N. (2007). Biophysical Chemistry, 127, 1–8.

    Article  CAS  Google Scholar 

  47. Welfle, K., Misselwitz, R., Hausdorf, G., Höhne, W., & Welfle, H. (1999). Biochimica et Biophysica Acta, 1431, 120–131.

    Article  CAS  Google Scholar 

  48. Buchner, J., Renner, M., Lilie, H., Hinz, H. J., Jaenicke, R., Kiefhabel, T., & Rudolph, R. (1991). Biochemistry, 30, 6922–6929.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully thank Yih Yean Lee, Hui Ching Hia, and Ming Wei Wu for their help with producing and purifying the IgGs. Furthermore, the authors would like to thank Christopher Tan for his help with analytical SEC and Vanessa Ding for providing hESC for experiments. This work was supported by the Biomedical Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Mueller.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

DOC 1,123 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, M., Loh, M.Q.T., Tee, D.H.Y. et al. Liquid Formulations for Long-Term Storage of Monoclonal IgGs. Appl Biochem Biotechnol 169, 1431–1448 (2013). https://doi.org/10.1007/s12010-012-0084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0084-z

Keywords

Navigation