Skip to main content

Advertisement

Log in

Dehydration of Ethanol by Facile Synthesized Glucose-Based Silica

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bioethanol is considered a potential liquid fuel that can be produced from biomass by fermentation and distillation. Although most of the water is removed by distillation, the purity of ethanol is limited to 95–96 % due to the formation of a low-boiling point, water–ethanol azeotrope. To improve the use of ethanol as a fuel, many methods, such as dehydration, have been proposed to avoid distillation and improve the energy efficiency of extraction. Glucose-based silica, as an adsorbent, was prepared using a simple method, and was proposed for the adsorption of water from water–ethanol mixtures. After adsorption using 0.4 g of adsorbent for 3 h, the initial water concentration of 20 % (water, v/v) was decreased to 10 % (water, v/v). For water concentrations less than 5 % (water, v/v), the adsorbent could concentrate ethanol to 99 % (ethanol, v/v). The Langmuir isotherms used to describe the adsorption of water on an adsorbent showed a correlation coefficient of 0.94. The separation factor of the adsorbent also decreased with decreasing concentration of water in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Quintero, J. A., Montoy, M. I., Sánchez, O. J., Giraldo, O. H., & Cardona, C. A. (2008). Fuel ethanol production from sugarcane and corn: comparative analysis for a Colombian case. Energy, 33, 385–399.

    Article  CAS  Google Scholar 

  2. Gnansounou, E., & Dauriat, A. (2010). Techno-economic analysis of lignocellulosic ethanol: a review. Bioresource Technology, 101, 4980–4991.

    Article  CAS  Google Scholar 

  3. Bridgwater, A. V. (1995). The technical and economic feasibility of biomass gasification for power generation. Fuel, 74, 631–653.

    Article  CAS  Google Scholar 

  4. Qureshi, N., Hughes, S., Maddox, I. S., & Cotta, M. A. (2005). Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess and Biosystems Engineering, 27, 215–222.

    Article  CAS  Google Scholar 

  5. Vane, L. M. (2005). A review of pervaporation for product recovery from biomass fermentation processes. Journal of Chemical Technology and Biotechnology, 80, 603–629.

    Article  CAS  Google Scholar 

  6. Dias, M. O. S., Ensinas, A. V., Nebra, S. A., Filho, R. M., Rossell, C. E. V., & Maciel, M. R. W. (2009). Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chemical Engineering Research and Design, 87, 1206–1216.

    Article  CAS  Google Scholar 

  7. Garcia-Herreros, P., Gomez, J. M., Gil, I. D., & Rodriguez, G. (2011). Optimization of the design and operation of an extractive distillation system for the production of fuel grade ethanol using glycerol as entrainer. Industrial and Engineering Chemistry Research, 50, 3977–3985.

    Article  CAS  Google Scholar 

  8. Alpert, A. J. (1990). Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of Chromatography, 499, 177–196.

    Article  CAS  Google Scholar 

  9. Hemström, P., & Irgum, K. (2006). Hydrophilic interaction chromatography. Journal of Separation Science, 29, 1784–1821.

    Article  Google Scholar 

  10. Enomoto, N., Furukawa, S., Ogasawara, Y., Akano, H., Kawamura, Y., Yashima, E., et al. (1996). Preparation of silica gel-bonded amylose through enzyme-catalyzed polymerization and chiral recognition ability of its phenylcarbamate derivative in HPLC. Analytical Chemistry, 68, 2798–2804.

    Article  CAS  Google Scholar 

  11. Kacprzak, K. M., Maier, N. M., & Lindner, W. (2006). Highly efficient immobilization of Cinchona alkaloid derivatives to silica gel via click chemistry. Tetrahedron Letters, 47, 8721–8726.

    Article  CAS  Google Scholar 

  12. Moni, L., Ciogli, A., D’Acquarica, I., Dondoni, A., Gasparrini, F., & Marra, A. (2010). Synthesis of sugar-based silica gels by copper-catalysed azide–alkyne cycloaddition via a single-step azido-activated silica intermediate and the use of the gels in hydrophilic interaction chromatography. Chemistry—A European Journal, 16, 5712–5722.

    CAS  Google Scholar 

  13. Kobayashi, K., Sumitomo, H., & Ina, Y. (1985). Synthesis and functions of polystyrene derivatives having pendant oligosaccharides. Polymer Journal, 17, 567–575.

    Article  CAS  Google Scholar 

  14. Hamshimoto, K., Imanishi, S., Okada, M., & Sumitomo, H. (1991). Chemical modification of the reducing chain end in dextrans and trimethylsilylation of its hydroxyl groups. Journal of Polymer Science Part A: Polymer Chemistry, 29, 1271–1279.

    Article  Google Scholar 

  15. Haupt, M., Knaus, S., Rohr, T., & Gruber, H. (2000). Carbohydrate modified polydimethylsiloxanes. Part 1. Synthesis and characterization of carbohydrate silane and siloxane building blocks. Journal of Macromolecular Science: Pure and Applied Chemistry, A37, 323–341.

    CAS  Google Scholar 

  16. Chen, Y., Zhang, Z., Sui, X., Brennan, J. D., & Brook, M. A. (2005). Reduced shrinkage of sol–gel derived silica using sugar-based silsesquioxane precursors. Journal of Materials Chemistry, 15, 3132–3141.

    Article  CAS  Google Scholar 

  17. Bayazit, S. S., Inci, I., & Uslu, H. (2011). Adsorption of lactic acid from model fermentation broth onto activated carbon and Amberlite IRA-67. Journal of Chemical & Engineering Data, 56, 1751–1754.

    Article  CAS  Google Scholar 

  18. Tian, M., Bi, W., & Row, K. H. (2011). Molecular imprinting in ionic liquid-modified porous polymer for recognitive separation of three tanshinones from Salvia miltiorrhiza Bunge. Analytical and Bioanalytical Chemistry, 399, 2495–2502.

    Article  CAS  Google Scholar 

  19. Bi, W., Zhou, J., & Row, K. H. (2011). Solid phase extraction of lactic acid from fermentation broth by anion-exchangeable silica confined ionic liquids. Talanta, 83, 974–979.

    Article  CAS  Google Scholar 

  20. Carleton, N. R., & Robert, W. S. (1966). Adsorption separation factors and selective adsorbent capacities of some binary liquid hydrocarbon mixtures. Journal of Physical Chemistry, 70, 787–797.

    Article  Google Scholar 

  21. Coughlin, R. W., & Ezra, F. S. (1968). Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environmental Science & Technology, 2, 291–297.

    Article  CAS  Google Scholar 

  22. Al-Degs, Y., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2000). Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Research, 34, 927–935.

    Article  CAS  Google Scholar 

  23. Kuhn, J., Yajima, K., Tomita, T., Gross, J., & Kapteijn, F. (2008). Dehydration performance of a hydrophobic DD3R zeolite membrane. Journal of Membrane Science, 321, 344–349.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by an INHA University Research Grant (INHA-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Ho Row.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, B., Bi, W. & Row, K.H. Dehydration of Ethanol by Facile Synthesized Glucose-Based Silica. Appl Biochem Biotechnol 169, 1056–1068 (2013). https://doi.org/10.1007/s12010-012-0076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0076-z

Keywords

Navigation