Skip to main content
Log in

Analysis of Dormant Bud (Banjhi) Specific Transcriptome of Tea (Camellia sinensis (L.) O. Kuntze) from cDNA Library Revealed Dormancy-Related Genes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bud dormancy is of ecological and economical interest due to its impact on tea (Camellia sinensis (L.) O. Kuntze) plant growth and yield. Growth regulation associated with dormancy is an essential element in plant’s life cycle that leads to changes in expression of large number of genes. In order to identify and provide a picture of the transcriptome profile, cDNA library was constructed from dormant bud (banjhi) of tea. Sequence and gene ontology analysis of 3,500 clones, in many cases, enabled their functional categorization concerning the bud growth. Based on the cDNA library data, the putative role of identified genes from tea is discussed in relation to growth and dormancy, which includes morphogenesis, cellular differentiation, tropism, cell cycle, signaling, and various metabolic pathways. There was a higher representation of unknown processes such as unknown molecular functions (65.80 %), unknown biological processes (62.46 %), and unknown cellular components (67.42 %). However, these unknown transcripts represented a novel component of transcripts in tea plant bud growth and/or dormancy development. The identified transcripts and expressed sequence tags provides a valuable public resource and preliminary insights into the molecular mechanisms of bud dormancy regulation. Further, the findings will be the target of future expression experiments, particularly for further identification of dormancy-related genes in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thirugnanasambantham, K., Prabu, G., Senthilkumar, P., Suresh Ramraj, S., & Mandal, A. K. A. (2011). Plant Physiology and Biochemistry, 49, 565–571.

    Article  Google Scholar 

  2. Paul, A., & Kumar, S. (2011). Functional & Integrative Genomics, 11, 659–664.

    Article  CAS  Google Scholar 

  3. Nakayme, A., & Harada, S. (1960). Tea Research Journal, 16, 1–5.

    Article  Google Scholar 

  4. Horvath, D. P., Soto-Suarez, M., Chao, W. S., Jia, Y., & Anderson, J. V. (2005). Weed Science, 53, 795–801.

    Article  CAS  Google Scholar 

  5. Rohde, A., Ruttink, T., Hostyn, V., Sterck, L., Driessche, K. V., & Boerjan, W. (2007). Journal of Experimental Botany, 58, 4047–4060.

    Article  CAS  Google Scholar 

  6. Horvath, D. P., Chao, W. S., Suttle, J. C., Thimmapuram, J., & Anderson, J. V. (2008). BMC Genomics, 9, 536.

    Article  Google Scholar 

  7. Balasaravanan, T., Pius, P. K., Rajkumar, R., Muraleedharan, N., & Shasany, A. K. (2003). Plant Science, 165, 365–372.

    Article  CAS  Google Scholar 

  8. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. S. F. (1997). Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  9. Conesa, A., & Gotz, S. (2008). International Journal of Plant Genome, 2008, 1–13.

  10. Satyanarayana, N., Cox, S., & Sharma, V. S. (1992). Journal of Plantation Crops, 20, 151–156.

    Google Scholar 

  11. Cox, S., Raj Kumar, R., & Gunasundari, R. (2000). In N. Muraleedharan & R. Rajkumar (Eds.), Recent Advances in Plantation Crops Research (pp. 125–129). New Delhi: Allied Publishers Pvt. Ltd.

  12. Dekkers, B. J. W., Schuurmans, J. M. M. J., & Smeekens, S. C. M. (2008). Plant Molecular Biology, 67, 151–167.

    Article  CAS  Google Scholar 

  13. Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Annual Review of Plant Biology, 57, 675–709.

    Article  CAS  Google Scholar 

  14. Dijkwel, P. P., Huijser, C., Weisbeek, P. J., Chua, N. H., & Smeekens, S. C. M. (1997). The Plant Cell, 9, 583–595.

    CAS  Google Scholar 

  15. Matthews, R., & Stephens, W. (2006). Experimental Agriculture, 34, 345–367.

    Article  Google Scholar 

  16. Bi, Y. D., Wei, Z. G., Shen, Z., Lu, T. C., Cheng, Y. X., Wang, B. C., & Yang, C. P. (2011). Molecular Biology Report, 38, 721–729.

    Article  CAS  Google Scholar 

  17. Genschik, P., Criqui, M. C., Parmentier, Y., Derevier, A., & Fleck, J. (1998). The Plant Cell, 10, 2063–2075.

    CAS  Google Scholar 

  18. Jennifer, M., Geraint, P., & Mark, E. (2004). The Plant Cell, 16, 3181–3195.

    Article  Google Scholar 

  19. Hershko, A., & Ciechanover, A. (1998). Annual Review of Biochemistry, 67, 425–479.

    Article  CAS  Google Scholar 

  20. Pagano, M. (1997). The FASEB Journal, 11, 1067–1075.

    CAS  Google Scholar 

  21. Xia, C., Bao, Z., Tabassam, F., Ma, W., Qiu, M., Hua, S., & Liu, M. (2000). The Journal of Biological Chemistry, 275, 20942–20948.

    Article  CAS  Google Scholar 

  22. Barroco, R. M., Poucke, K. V., Bergervoet, J. H. W., Veylder, L. D., Groot, S. P. C., Inze, D., & Engler, G. (2005). Plant Physiology, 137, 127–140.

    Article  CAS  Google Scholar 

  23. Cans, C., Passer, B. J., Shalak, V., Nancy-Portebois, V., Crible, V., Amzallag, V., Allanic, D., Tufino, R., Argentini, M., Moras, D., Fiucci, G., Goud, B., Mirande, M., Amson, R., & Telerman, A. (2003). Proceedings of the National Academy of Sciences USA, 100, 13892–13897.

    Article  CAS  Google Scholar 

  24. Gachet, Y., Tournier, S., Lee, M., Laris-Karatzas, A., Poulton, T., & Bommer, U. A. (1999). Journal of Cell Science, 112, 1257–1271.

    CAS  Google Scholar 

  25. Maas, N. L., Miller, K. M., DeFazio, L. G., & Toczyski, D. P. (2006). Molecular Cell, 23, 109–119.

    Article  CAS  Google Scholar 

  26. Singh, K., Kumar, S., & Ahuja, P. S. (2009). Molecular Biology Reports, 36, 537–542.

    Article  CAS  Google Scholar 

  27. Ma, Q. (2007). Journal of Plant Growth Regulation, 26, 369–388.

    Article  CAS  Google Scholar 

  28. Engel, M., Seifert, M., Theisinger, B., & Seyfert, U. (1998). The Journal of Biological Chemistry, 273, 20058–20065.

    Article  CAS  Google Scholar 

  29. Johansson, M., Hammargren, J., Uppsall, E., Mackenzie, A., & Knorpp, C. (2008). Plant Science, 174, 192–199.

    Article  CAS  Google Scholar 

  30. Dai, Y., Wang, H. Z., Li, B. H., Huang, J., Liu, X. F., Zhou, Y. H., Mou, Z. L., & Li, J. Y. (2006). The Plant Cell, 18, 308–320.

    Article  CAS  Google Scholar 

  31. Chaboute, M. E., Clement, B., Sekine, M., Philipps, G., & Gigot, N. C. (2000). The Plant Cell, 12, 1987–1999.

    CAS  Google Scholar 

  32. Lazar, G., & Goodman, H. M. (2006). Proceedings of the National Academy of Sciences U S A, 103, 472–476.

    Article  CAS  Google Scholar 

  33. Thomas, T., & Thomas, T. J. (2001). Cellular and Molecular Life Sciences, 58, 244–258.

    Article  CAS  Google Scholar 

  34. Shi, J., Gonzales, R. A., & Bhattacharyya, M. K. (1996). The Journal of Biological Chemistry, 271, 9384–9389.

    Article  CAS  Google Scholar 

  35. Pastori, G. M., & Foyer, C. H. (2002). American Society of Plant Biologists, 129, 460–468.

    CAS  Google Scholar 

  36. Hedley, P. E., Russell, J. R., Jorgensen, L., Gordon, S., Morris, J. A., Hackett, C. A., Cardle, L., & Brennan, R. (2010). BMC Plant Biology, 10, 202.

    Article  Google Scholar 

  37. Baier, M., & Dietz, K. J. (1997). The Plant Journal, 12, 179–190.

    Article  CAS  Google Scholar 

  38. Meyer, Y., Reichheld, J. P., & Vignols, F. (2005). Photosynthesis Research, 86, 419–433.

    Article  CAS  Google Scholar 

  39. Carles, C., Bies-Etheve, N., Aspart, L., Leon-Kloosterziel, K. M., Koornneef, M., Echeverria, M., & Delseny, M. (2002). The Plant Journal, 30, 373–383.

    Article  CAS  Google Scholar 

  40. Schrader, J., Moyle, R., Bhalerao, R., Hertzberg, M., Lundeberg, J., Nilsson, P., & Bhalerao, R. P. (2004). The Plant Journal, 40, 173–187.

    Article  CAS  Google Scholar 

  41. Jimenez, S., Reighard, G. L., & Bielenberg, D. G. (2010). Plant Molecular Biology, 73, 157–167.

    Article  CAS  Google Scholar 

  42. Ruttink, T., Arend, M., Morreel, K., Storme, V., Rombauts, S., Fromm, J., Bhalero, R. P., Boerjan, W., & Rohde, A. (2007). The Plant Cell, 19, 2370–2390.

    Article  CAS  Google Scholar 

  43. Hoson, T., & Masuda, Y. (1995). Plant & Cell Physiology, 36, 517–523.

    CAS  Google Scholar 

  44. Park, S., Keathley, D. E., & Han, K. H. (2008). Tree Physiology, 28, 321–329.

    Article  CAS  Google Scholar 

  45. Mathiason, K., He, D., Grimplet, J., Venkateswari, J., Galbraith, D., Or, E., & Fennell, A. (2009). Functional & Integrative Genomics, 9, 81–96.

    Article  CAS  Google Scholar 

  46. Mira, H., Martinez-Garcia, F., & Penarrubia, L. (2001). The Plant Journal, 25, 521–528.

    Article  CAS  Google Scholar 

  47. Zheng-Jun, X., Masatoshi, N., Yoshihito, S., & Isomaro, Y. (2002). Plant Physiology, 129, 1285–1295.

    Article  Google Scholar 

  48. Meza-Zepeda, L. A., Baudo, M. M., Palva, E. T., & Heino, P. (1998). Journal of Experimental Botany, 49, 1451–1452.

    CAS  Google Scholar 

  49. Anderson, J. V., Chao, W. S., & Horvath, D. P. (2001). Weed Science, 49, 581–589.

    Article  CAS  Google Scholar 

  50. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., & Shinozaki, K. Y. (2000). Proceedings of the National Academy of Sciences U S A, 97, 1632–11637.

    Article  Google Scholar 

  51. Tsukagoshi, H., Saijo, T., Shibata, D., Morikami, A., & Nakamura, K. (2005). Plant Physiology, 138, 675–685.

    Article  CAS  Google Scholar 

  52. Kasai, T., Inoue, M., Koshiba, S., Yabuki, T., Aoki, M., Nunokawa, E., Seki, E., Matsuda, T., Matsuda, N., Tomo, Y., Shirouzu, M., Terada, T., Obayashi, N., Hamana, H., Shinya, N., Tatsuguchi, A., Yasuds, S., Yoshida, M., Hirota, H., Matsuo, Y., Tani, K., Suzuki, H., Arakawa, T., Carninci, P., Kawai, J., Hayashizaki, Y., Kigawa, T., & Yokoyama, S. (2004). Protein Science, 13, 545–548.

    Article  CAS  Google Scholar 

  53. Stafstrom, J. P., Ripley, B. D., Devitt, M. L., & Drake, B. (1998). Planta, 205, 547–552.

    Article  CAS  Google Scholar 

  54. Horvath, D. P., Anderson, J. V., Chao, W. S., & Foley, M. E. (2003). Trends in Plant Science, 8, 534–540.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. P. Mohan Kumar, Director, UPASI Tea Research Foundation, and Dr. N. Muraleedharan, Tea Research Association, Toklai for their encouragement and support during the course of study. Financial assistance from NTRF, Tea Board, Kolkata is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abul Kalam Azad Mandal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

A table containing the banjhi bud specific cDNA clone number as well as their accession number, the putative identities of, the top BLAST result, the e-value for the BLAST hit, the GenBank accession numbers and the molecular, functional, cellular component categorization, is available online. (XLS 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirugnanasambantham, K., Prabu, G., Palanisamy, S. et al. Analysis of Dormant Bud (Banjhi) Specific Transcriptome of Tea (Camellia sinensis (L.) O. Kuntze) from cDNA Library Revealed Dormancy-Related Genes. Appl Biochem Biotechnol 169, 1405–1417 (2013). https://doi.org/10.1007/s12010-012-0070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0070-5

Keywords

Navigation