Skip to main content
Log in

Influence of Homogenization Treatment on Physicochemical Properties and Enzymatic Hydrolysis Rate of Pure Cellulose Fibers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study is to compare the effect of different homogenization treatments on the physicochemical properties and the hydrolysis rate of a pure bleached cellulose. Results obtained show that homogenization treatments improve the enzymatic hydrolysis rate of the cellulose fibers by 25 to 100 %, depending of the homogenization treatment applied. Characterization of the samples showed also that homogenization had an impact on some physicochemical properties of the cellulose. For moderate treatment intensities (pressure below 500 b and degree of homogenization below 25), an increase of water retention values (WRV) that correlated to the increase of the hydrolysis rate was highlighted. Result also showed that the overall crystallinity of the cellulose properties appeared not to be impacted by the homogenization treatment. For higher treatment intensities, homogenized cellulose samples developed a stable tridimentional network that contributes to decrease cellulase mobility and slowdown the hydrolysis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Heungjo, A., Wilbert, E. W., & Stephen, W. S. (2011). Biomass and Bioenergy, 35, 3763–3774.

    Google Scholar 

  2. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Renewable Energy, 37, 19–27.

    Article  CAS  Google Scholar 

  3. Franklin, K.R., Hopkinson, A., Webb, N., White, M.S. (2002). Patent WO/2002/032914. 280.

  4. Han, S., Baigude, H., Hattori, K., Yoshida, T., & Uryu, T. (2007). Carbohydrate Polymers, 68(1), 26–34.

    Article  CAS  Google Scholar 

  5. Wang, K., Jiang, J. X., Xu, F., & Sun, R. C. (2009). Polymer Degradation and Stability, 94, 1379–1388.

    Article  CAS  Google Scholar 

  6. Sassner, P., Galbe, M., & Zacchi, G. (2008). Biomass and Bioenergy, 32, 422–430.

    Article  CAS  Google Scholar 

  7. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  8. Galbe, M., & Zacchi, G. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 41–65.

    Article  CAS  Google Scholar 

  9. Avellar, B. K., & Glasser, W. G. (1998). Biomass and Bioenergy, 14, 205–218.

    Article  CAS  Google Scholar 

  10. Jacquet, N., Vanderghem, C., Blecker, C., & Paquot, M. (2010). BASE, 14(S2), 561–566.

    CAS  Google Scholar 

  11. Pérez, J. A., Ballesteros, I., Ballesteros, M., Sáez, F., Negro, M. J., & Manzanares, P. (2008). Fuel, 87, 3640–3647.

    Article  Google Scholar 

  12. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Bioresource Technology, 96, 1959–1966.

    Article  CAS  Google Scholar 

  13. Palonen, H., Thomsen, A. B., Tenkanen, M., Schmidt, A. S., & Viikari, L. (2004). Applied Biochemistry and Biotechnology, 117, 1–17.

    Article  CAS  Google Scholar 

  14. Schacht, C., Zetzl, C., & Brunner, G. (2008). Journal of Supercritical Fluids, 46, 299–321.

    Article  CAS  Google Scholar 

  15. Zhu, S., Wu, Y., Yu, Z., Wang, C., Yu, F., Jin, S., et al. (2006). Biosystems Engineering, 93, 279–283.

    Article  Google Scholar 

  16. Sun, R. C., & Tomkinson, R. C. (2002). Carbohydrate Polymers, 50(3), 263–271.

    Article  CAS  Google Scholar 

  17. Floury, J., Desrumaux, A., Axelos, M., & Legrand, J. (2002). Food Hydrocolloids, 16(1), 47–53.

    Article  CAS  Google Scholar 

  18. Pandolfe, W. D. (1999). Wiley encyclopedia of food science and technology (2nd ed.). New York: Wiley.

    Google Scholar 

  19. Walstra, P. (1983). In P. Becher (Ed.), Encyclopedia of emulsion technology, vol. 1: Formation of emulsion (pp. 57–127). New York: Marcel Dekker.

    Google Scholar 

  20. Siro, I., & Plackett, D. (2012). Cellulose, 17(3), 459–494.

    Article  Google Scholar 

  21. Dinand, E., Chanzy, H., & Vignon, R. M. (1999). Food Hydrocolloids, 13(3), 275–283.

    Article  CAS  Google Scholar 

  22. Agoda-Tandjawa, G., Durand, S., Berot, S., Blassel, C., Gaillard, C., Garnier, C., et al. (2010). Carbohydrate Polymers, 80, 677–686.

    Article  CAS  Google Scholar 

  23. Bhatnagar, A., & Sain, M.M. (2003). Canadian Intellectual Property Office No. 2437616.

  24. Nakagaito, A. N., & Yano, H. (2004). Applied Physics A-Materials Science Processing, 78, 547–552.

    Article  CAS  Google Scholar 

  25. Habibi, Y., Mahrouz, M., & Vignon, M. R. (2008). Food Chemistry, 115(2), 423–429.

    Article  Google Scholar 

  26. Vanderghem, C., Boquel, P., Blecker, C., & Paquot, M. (2010). Applied Biochemistry and Biotechnology, 160(8), 2300–2307.

    Article  CAS  Google Scholar 

  27. Ioannis, N., Konstantina, T., & Stavros, M. (2006). European Journal of Pharmaceutics and Biopharmaceutics, 63, 278–287.

    Article  Google Scholar 

  28. Leviton, A., & Pallansch, M. J. (1959). Journal of Dairy Science, 42(1), 20–27.

    Article  Google Scholar 

  29. Vanderghem, C., Jacquet, N., Danthine, S., Blecker, C., & Paquot, M. (2012). Applied Biochemistry and Biotechnology, 166(6), 1423–1432.

    Article  CAS  Google Scholar 

  30. Yeh, A. I., Huang, Y. C., & Chen, S. H. (2010). Carbohydrate Polymers, 79, 192–199.

    Article  CAS  Google Scholar 

  31. Nelson, M. L., & O’Connor, R. T. (1964). Journal of Applied Polymer Science, 8, 1325–1341.

    Article  CAS  Google Scholar 

  32. Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1962). Texas Research Journal, 29, 786–794.

    Article  Google Scholar 

  33. Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A. B., & Ståhl, K. (2005). Cellulose, 12, 563–576.

    Article  CAS  Google Scholar 

  34. Bibin, M. C., Alcides Lopes, L., Ferreira de Souza, S., Sabu, T., Pothan, L. A., & Kottaisamy, M. (2010). Carbohydrate Polymers, 81, 720–725.

    Article  Google Scholar 

  35. Mantanis, G. I., Young, R. A., & Rowell, R. M. (1995). Cellulose, 2, 1–22.

    CAS  Google Scholar 

  36. Paquot, M., Thonart, P., Jacquemin, P., & Rassel, A. (1981). Holzforschung, 35, 87–93.

    Article  CAS  Google Scholar 

  37. Azizi Samir, M. A. S., Alloin, F., & Dufresne, A. (2005). Biomacromolecules, 6, 612–626.

    Article  Google Scholar 

  38. Tabilo-Munizaga, G., & Barbosa-Canovas, G. V. (2005). Journal of Food Engineering, 67, 147–156.

    Article  Google Scholar 

  39. Guo, Q., Cui, S. W., Wang, Q., Douglas Goff, H., & Smith, A. (2008). Food Hydrocolloids, 23, 1542–1547.

    Article  Google Scholar 

  40. Eichhorna, S. J., Young, R. J., Davies, R. J., & Riekel, C. (2003). Polymer, 44, 5901–5908.

    Article  Google Scholar 

  41. Eriksson, R., Pajari, H., & Rosenholm, J. B. (2009). Journal of Colloid and Interface Science, 332, 104–112.

    Article  CAS  Google Scholar 

  42. Rudraraju, V. S., & Wyandt, C. M. (2004). International Journal of Pharmaceutics, 292, 53–61.

    Article  Google Scholar 

  43. Jacquet, N., Vanderghem, C., Danthine, S., Quiévy, N., Blecker, C., Devaux, J., Paquot, M. (2012). Bioresour Technol., In press.10.1016/j.biortech.2012.06.073

  44. Lee, S. B., Shin, H. S., Ryu, D. D. Y., & Mandels, M. (1982). Biotechnology and Bioengineering, 24, 2137–2153.

    Article  CAS  Google Scholar 

  45. Stone, J. E., Scallan, A. M., Donefer, E., & Ahlgren, E. (1969). Advances in Chemistry Series, 95, 219–307.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the Walloon Region in the frame of the NACELL program (convention 031/5575), LIGNOFUEL program (convention no. 716721) and TECHNOSE program (convention no. 716757). Mr. Maniet Guillaume, Mr. Frederic Meyer, and Me Doran Lynn are acknowledged for excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jacquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacquet, N., Vanderghem, C., Danthine, S. et al. Influence of Homogenization Treatment on Physicochemical Properties and Enzymatic Hydrolysis Rate of Pure Cellulose Fibers. Appl Biochem Biotechnol 169, 1315–1328 (2013). https://doi.org/10.1007/s12010-012-0057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0057-2

Keywords

Navigation