Skip to main content
Log in

Enhanced Saccharification of Biologically Pretreated Wheat Straw for Ethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The biological pretreatment of lignocellulosic biomass with white-rot fungi for the production of bioethanol is an alternative to the most used physico-chemical processes. After biological treatment, a solid composed of cellulose, hemicellulose, and lignin—this latter is with a composition lower than that found in the initial substrate—is obtained. On the contrary, after applying physico-chemical methods, most of the hemicellulose fraction is solubilized, while cellulose and lignin fractions remain in the solid. The optimization of the combination of cellulases and hemicellulases required to saccharify wheat straw pretreated with the white-rot fungus Irpex lacteus was carried out in this work. The application of the optimal dosage made possible the increase of the sugar yield from 33 to 54 %, and at the same time the reduction of the quantity of enzymatic mixture in 40 %, with respect to the initial dosage. The application of a pre-hydrolysis step with xylanases was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dias, A. A., Freitas, G. S., Marques, G. S. M., Sampaio, A., Fraga, I. S., Rodrigues, M. A. M., Evtuguin, D. V., & Bezerra, R. M. F. (2010). Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresource Technology, 101(15), 6045–6050.

    Article  CAS  Google Scholar 

  2. Sánchez, C. (2008). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27, 185–194.

    Article  Google Scholar 

  3. Dorado, J., Almendros, G., Camarero, S., Martínez, A. T., Vares, T., & Hatakka, A. (1999). Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enzyme and Microbial Technology, 25, 605–612.

    Article  CAS  Google Scholar 

  4. Bak, J. S., Ko, J. K., Choi, I., Park, Y., Seo, J., & Kim, K. H. (2009). Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering, 104(3), 471–482.

    Article  CAS  Google Scholar 

  5. Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 100(6), 637–643.

    Article  CAS  Google Scholar 

  6. Salvachúa, D., Prieto, A., López-Abelairas, M., Lu-Chau, T., Martínez, M. J., & Lema, J. M. (2011). Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresource Technology, 102(16), 7500–7506.

    Article  Google Scholar 

  7. Zimbardi, F., Viggiano, D., Nanna, F., Demichele, M., Cuna, D., & Cardinale, G. (1999). Steam explosion of straw in batch and continuous systems. Applied Biochemistry and Biotechnology, 77, 117–125.

    Article  Google Scholar 

  8. Roy, P., Tokuyasu, K., Takahiro, O., & Nakamura, N. (2012). A techno-economic and environmental evaluation of the life cycle of bioethanol produced from rice straw by RT-CaCCO process. Biomass and Bioenergy, 37, 188–195.

    Article  CAS  Google Scholar 

  9. Berlin, A., Maximenko, V., Gilkes, N., & Saddler, J. (2006). Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnology and Bioengineering, 97(2), 287–296.

    Article  Google Scholar 

  10. Vancov, T., & McIntosh, S. (2011). Effects of dilute acid pretreatment on enzyme saccharification of wheat stubble. Journal of Chemical Technology and Biotechnology, 86, 818–825.

    Article  CAS  Google Scholar 

  11. Jeya, M., Zhang, Y., Kim, I., & Lee, J. (2009). Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresource Technology, 100, 5155–5161.

    Article  CAS  Google Scholar 

  12. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  13. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2007). Determination of structural carbohydrates and lignin in biomass. In U.S. Department of Energy (Ed.), Laboratory analytical procedure. Washington, DC: NREL.

    Google Scholar 

  14. Dowe, N., & McMillan, J. (2001). Lignocellulosic biomass hydrolysis and fermentation. In U.S. Department of Energy (Ed.), Laboratory analytical procedure. Washington, DC: NREL.

    Google Scholar 

  15. Box, G. E. P., & Behnken, D. W. (1960). Some new three level design for study of quantitative variables. Technometrics, 2, 455–475.

    Article  Google Scholar 

  16. Zhong, W., Yu, H., Song, L., & Zhang, X. (2011). Combined pretreatment with white-rot fungus and alkali at near room-temperature for improving saccharification of corn stalks. Bioresource Technology, 6(3), 3440–3451.

    CAS  Google Scholar 

  17. Zhang, J., Tuomainen, P., Siika-aho, M., & Viikari, L. (2011). Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Bioresource Technology, 102, 9090–9095.

    Article  CAS  Google Scholar 

  18. Himmel, M. E., Adney, W. S., Baker, J. O., et al. (1997). Advanced bioethanol production technologies: a perspective. Fuels and Chemicals from Biomass, 666, 2–45.

    Article  CAS  Google Scholar 

  19. Kruus, K., & Andreacchi, A. (1995). Product inhibition of the recombinant CelS, an exoglucanase component of the Clostridium thermocellum cellulosome. Applied Microbiology and Biotechnology, 44(4), 399–404.

    Article  CAS  Google Scholar 

  20. Kim, E., Irwin, D. C., Walker, L. P., & Wilson, D. B. (1998). Factorial optimization of a six-cellulase mixture. Biotechnology and Bioengineering, 58, 494–501.

    Article  CAS  Google Scholar 

  21. Ballesteros, I., Negro, M. J., Oliva, J. M., Cabañas, A., Manzanares, P., & Ballesteros, M. (2006). Ethanol production from steam-explosion pretreated wheat straw. Applied Biochemistry and Biotechnology, 129–132, 496–508.

    Article  Google Scholar 

  22. Product specification. Available from: http://www.scienceplease.com/files/products/overviews/cellicc-tec2.pdf. Accessed 19 Feb 2012.

  23. Erdei, B., Frankó, B., Galbe, M., & Zacchi, G. (2012). Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnology for Biofuels, 5, 12.

    Article  CAS  Google Scholar 

  24. Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30(6), 1458–1480. doi:10.1016/j.biotechadv.2012.03.002.

    Article  Google Scholar 

  25. Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 794–824.

    Google Scholar 

  26. Andersen, N., Johansen, K. S., Michelsen, M., Stenby, E. H., Krogh, K. B., & Olsson, L. (2008). Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme and Microbial Technology, 42, 362–370.

    Article  CAS  Google Scholar 

  27. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnology Progress, 21, 816–822.

    Article  CAS  Google Scholar 

  28. Kumar, R., & Wyman, C. E. (2009). Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress, 25, 302–314.

    Article  CAS  Google Scholar 

  29. De Vries, R. P., Kester, H. C., Poulsen, C. H., Benen, J. A., & Visser, J. (2000). Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydrate Research, 327, 401–410.

    Article  Google Scholar 

Download references

Acknowledgments

This work was economically supported by the CDTI (Project CEN-200910140) and by the Ministry of Economy and Competitiveness of Spain through the Local Investment Fund for Employment (Government of Spain). This research is carried out in collaboration with Abengoa Bionergía Nuevas Tecnologías. Authors thank also Novozymes for providing the commercial enzymes. T. Lu-Chau wishes to thank the I. Barreto Program from the Galicia Government for the economical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. López-Abelairas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Abelairas, M., Lu-Chau, T.A. & Lema, J.M. Enhanced Saccharification of Biologically Pretreated Wheat Straw for Ethanol Production. Appl Biochem Biotechnol 169, 1147–1159 (2013). https://doi.org/10.1007/s12010-012-0054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0054-5

Keywords

Navigation