Skip to main content
Log in

Production and Partial Characterization of Cellulases and Xylanases from Trichoderma atroviride 676 Using Lignocellulosic Residual Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Trichoderma atroviride 676 was studied to evaluate its efficiency in the production of some lignocellulolytic enzymes, using lignocellulosic residual biomass. Best results were obtained when 3.0 % (w/v) untreated sugarcane bagasse was used (61.3 U mL−1 for xylanase, 1.9 U mL−1 for endoglucanase, 0.25 U mL−1 for FPase, and 0.17 U mL−1 for β-glucosidase) after 3–4 days fermentation. The maximal enzymatic activity for endoglucanase, FPase, and xylanase were observed at 50–60 °C and pH 4.0–5.0, whereas thermal stability at 50 °C (CMCase and FPase) or 40 °C (xylanase) was obtained after 8 h. Zymograms have shown two bands of 104 and 200 kDa for endoglucanases and three bands for xylanase (23, 36, and 55.7 kDa). The results obtained with T. atroviride strain 676 were comparable to those obtained with the cellulolytic strain Trichoderma reesei RUT-C30, indicating, in the studied conditions, its great potential for biotechnological application, especially lignocellulose biomass hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gottschalk, L. M. F., Oliveira, R. A., & Bon, E. P. S. (2010). Biochem. Engin. J., 51, 72–78.

    Article  CAS  Google Scholar 

  2. Jiang, X., Geng, A., He, N., & Li, Q. (2011). J Biosc Bioeng, 111, 121–127.

    Article  CAS  Google Scholar 

  3. Hendriks, A. T. W. M., & Zeeman, G. (2009). Biores Technol, 100, 10–18.

    Article  CAS  Google Scholar 

  4. Ghose, T. K. (1987). Pure Appl Chem, 59, 257–268.

    Article  CAS  Google Scholar 

  5. Bhat, M. K. (2000). Biotechnol Adv, 18, 355–383.

    Article  CAS  Google Scholar 

  6. Soccol, C. R., Vandenberghe, L. P. S., Medeiros, A. B. P., Karp, S. G., Buckeridge, M., Ramos, L. P., Pitarelo, A. P., Ferreira-Leitão, V., Gottschalk, L. M. F., Ferrara, M. A., Bon, E. P. S., Moraes, L. M. P., Araújo, J. A., & Torres, F. A. G. (2010). Biores Technol, 101, 4820–4825.

    Article  CAS  Google Scholar 

  7. Ferreira-Leitão, V., Gottschalk, L. M. F., Ferrara, M. A., Nepomuceno, A. L., Molinari, H. B. C., & Bon, E. P. S. (2010). Waste Biom Valoriz, 1, 65–76.

    Article  Google Scholar 

  8. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biores Technol, 74, 69–80.

    Article  CAS  Google Scholar 

  9. Maes, C., & Delcour, J. A. (2001). J Cer Sci, 34, 29–35.

    Article  CAS  Google Scholar 

  10. Parekh, M., Formanek, J., & Blaschek, H. P. (1999). Appl Microbiol Biotechnol, 51, 152–157.

    Article  CAS  Google Scholar 

  11. Grigorevski-Lima, A. L., Nascimento, R. P., Bon, E. P. S., & Coelho, R. R. R. (2005). Enz Microb Technol, 37, 272–277.

    Article  Google Scholar 

  12. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). J Biotechnol, 107, 65–72.

    Article  CAS  Google Scholar 

  13. Stenberg, K., Bollók, M., Réczey, K., Galbe, M., & Zacchi, G. (2000). Biotechnol Bioeng, 68, 204–210.

    Article  CAS  Google Scholar 

  14. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Biotechnol Prog, 17, 110–117.

    Article  CAS  Google Scholar 

  15. van Wyk, J. P. H., & Mohulatsi, M. (2003). Biores Technol, 86, 21–23.

    Article  Google Scholar 

  16. Kovácz, K., Megyeri, L., Szakacs, G., Kubicek, C. P., Galbe, M., & Zacchi, G. (2008). Enzyme Microb Technol, 43, 48–55.

    Article  Google Scholar 

  17. Hopwood, D. W., Bibb, M. J., Chater, K. F., Kieser, C., Bruton, C. J., & Kiezer, H. M. (1985). Genetic manipulation of Streptomyces. A laboratory manual (1st ed.). Norwich: The John Innes Institute.

    Google Scholar 

  18. Mandels, M., & Weber, J. (1969). In R. F. Gould (Ed.), The production of cellulases. Cellulases and its application, advances in chemistry series, vol 95 (pp. 391–414). Washington, D.C: American Chemical Society.

    Google Scholar 

  19. Miller, L. (1959). Anal Chem, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Bailey, M. J., Biely, P., & Poutanen, K. (1992). J Biotechnol, 23, 257–270.

    Article  CAS  Google Scholar 

  21. Colowick, S. P., & Kaplan, N. O. (1955). Methods in enzymology (Vol. 1). New York: Academic.

    Google Scholar 

  22. Grigorevski-Lima, A. L., Da Vinha, F. N. M., Souza, D. T., Bispo, A. S. R., Bon, E. P. S., Coelho, R. R. R., & Nascimento, R. P. (2009). App Biochem Biotechnol, 155, 18–26.

    Article  Google Scholar 

  23. Cesar, T., & Mrsa, V. (1996). Enz Microb Technol, 19, 289–296.

    Article  CAS  Google Scholar 

  24. Morag, E., Bayer, E. A., & Lamed, R. (1990). J Bacteriol, 172, 6098–6105.

    CAS  Google Scholar 

  25. Kovácz, K., Szakacs, G., & Zacchi, G. (2009). Biores Technol, 100, 1350–1357.

    Article  Google Scholar 

  26. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., & Kim, S. W. (2004). Biores Technol, 91, 153–156.

    Article  CAS  Google Scholar 

  27. Adav SS, Chao LT, Sze SK (2012) American Society for Biochemistry and Molecular Biology, In press.

  28. Naika, G. S., Kaul, P., & Prakash, V. (2007). J Agric Food Chem, 55, 7566–7572.

    Article  CAS  Google Scholar 

  29. Sul, O. J., Kim, J. H., Park, S. J., Son, Y. J., Park, B. R., Chung, D. K., Jeong, C. S., & Han, I. S. (2004). Appl Microbiol Biotechnol, 66, 63–70.

    Article  CAS  Google Scholar 

  30. Gashe, B. A. (1992). J App Bacteriol, 73, 79–82.

    Article  CAS  Google Scholar 

  31. Chen, C., Chen, J. L., & Lin, T. Y. (1997). Enzyme Microb Technol, 21, 91–96.

    Article  CAS  Google Scholar 

  32. Gerber, P. J., Heitmann, J. A., & Joyce, T. W. (1997). Biores Technol, 61, 127–140.

    Article  CAS  Google Scholar 

  33. Silva, L. A. O., & Carmona, E. C. (2008). Appl Biochem Biotechnol, 150, 117–125.

    Article  Google Scholar 

  34. Tenkanen, M., Puls, J., & Poutanen, K. (1992). Enzyme Microb Technol, 14, 566–574.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Pires do Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorevski-Lima, A.L., de Oliveira, M.M.Q., do Nascimento, R.P. et al. Production and Partial Characterization of Cellulases and Xylanases from Trichoderma atroviride 676 Using Lignocellulosic Residual Biomass. Appl Biochem Biotechnol 169, 1373–1385 (2013). https://doi.org/10.1007/s12010-012-0053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0053-6

Keywords

Navigation