Skip to main content
Log in

Chemopreventive Effect and HPTLC Fingerprinting Analysis of Jasminum sambac (L.) Ait. Extract Against DLA-Induced Lymphoma in Experimental Animals

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The anticancer activity of the ethanolic extract of Jasminum sambac against Dalton’s lymphoma ascites-induced lymphatic cancer in Swiss albino mice was investigated. The anticancer activity of J. sambac was studied against lymphoma using lipid profiles, biochemical parameters, and membrane-bound marker enzymes by standard procedures. A high-performance thin-layer chromatography fingerprinting analysis showed the presence of terpenoids and flavonoids. The levels of cholesterol, triglyceride, VLDL cholesterol, and LDL cholesterol were significantly decreased in tumor-induced mice, while HDL cholesterol showed increased levels compared with those profiles. On treatment with J. sambac, the levels were brought back to near normal. The albumin, creatinine, total protein, urea, and uric acid contents were also approaching normal values. There was s significant increase in the levels of ATPase in group II. These levels were brought back to normal upon plant extract treatment of mice. DNA fragmentation occurred in the tumor-induced group of tissue, and treatment with ethanolic extract reduced the DNA damage caused by lymphoma. Expression of lactate dehydrogenase (LDH) isoenzymes shows an increase in the levels of LDH-4 and LDH-5 in cancer-bearing animals which is brought back to near normal. Histopathological investigation showed normal sections of liver tissues in the treatment group. The results found in mice treated with ethanolic extract 100 mg kg−1 body weight quite promising and were comparable with the standard drug 5-fluorouracil. The statistically processed results support the conclusion that the ethanolic extract of J. sambac flower (100 mg kg−1) possesses a dose-dependent significant anticancer activity against lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Islam, M. S., Akhtar, M. M., Rahman, M. M., Rahman, M. A., Sarker, K. K., & Alam, M. F. (2009). Global Journal of Pharmacology, 3, 99–106.

    Google Scholar 

  2. Kalaiselvi, M., & Kalaivani, K. (2011). Pharmacologyonline, 1, 38–43.

    Google Scholar 

  3. Saha, D., & Tamrakar, A. (2011). Asian Journal of Research and Pharmacy Sciences, 1, 36–38.

    Google Scholar 

  4. Joshi, S.G. (2000). Oleaceae. In S.G. Joshi (Ed.), Medicinal plants (pp. 298–300). New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd.

  5. Shah, C. R., Suhagia, B. N., Shah, N. J., Patel, D. R., & Patel, N. M. (2008). Indian Journal of Pharmaceutical Sciences, 70, 251–255.

    Article  CAS  Google Scholar 

  6. Zak, B. (1977). Clinical Chemistry, 23, 1201–1214.

    CAS  Google Scholar 

  7. Rice, E. W. (1970). In M. P. Roderic (Ed.), Triglycerides (“neutral fats”) in serum. Standard methods of clinical chemistry (Vol. 6, pp. 215–222). New York: Academic.

    Google Scholar 

  8. Warnick, G. R., Nguyen, T., & Albers, A. A. (1985). Clinical Chemistry, 31, 217.

    CAS  Google Scholar 

  9. Natelson, S., Scott, M., & Beffa, C. (1951). American Journal of Clinical Pathology, 21, 1153–1172.

    CAS  Google Scholar 

  10. Caraway, W. T. (1963). Uric acid. In D. Selingson (Ed.), Standard methods of clinical chemistry (Vol. 4, pp. 239–247). New York: Academic.

    Google Scholar 

  11. Owen, J. A., Iggo, J. B., Scandrett, F. J., & Stemart, I. P. (1954). Biochemistry Journal, 58, 426–437.

    CAS  Google Scholar 

  12. Wolfson, W. Q., Cohn, C. E., & Ichiba, F. (1948). Estimation of albumin–globulin ratio by Biuret methods. Clinical Practical Biochemistry. 4th Edn., Cbs Publishers, London.

  13. Bonting, S. L. (1970). Sodium-potassium activated adenosine triphosphatase and calcium transport. In E. E. Bittar (Ed.), Membranes and ion transport (Vol. 1, pp. 739–769). New York: Wiley-Interscience.

    Google Scholar 

  14. Ohnishi, T., Suzuki, T., Suzuki, Y., & Ozawa, K. (1982). Biochemistry and Biophysics Acta, 684, 67–74.

    Article  CAS  Google Scholar 

  15. Fiske, C. J., & Subbaroew, Y. (1925). Journal of Biological Chemistry, 66, 375–400.

    CAS  Google Scholar 

  16. Hyun, S. J., Yoon, M. Y., Kim, T. H., & Kim, J. H. (1997). Anticancer Research, 17, 225–229.

    CAS  Google Scholar 

  17. McKenzie, D., & Henderson, A. R. (1983). Clinical Chemistry, 29, 189–195.

    CAS  Google Scholar 

  18. Beckman, C. H. (2000). Physical and Molecular Plant Pathology, 57, 101–110.

    Article  CAS  Google Scholar 

  19. Mariswamy, Y., Gnaraj, W. E., & Antonisamy, J. M. (2012). Asian Pacific Journal of Tropical Biomedical, S2, S8–S12.

    Google Scholar 

  20. Sasikumar, J. M., Jinu, U., & Shamna, R. (2009). European Journal of Biology Sciences, 1(2), 17–22.

    Google Scholar 

  21. Jagadeesh, M. C., Sreepriya, M., Bali, B., & Manjulakumari, D. (2009). African Journal of Biotechnology, 8, 4618–4622.

    CAS  Google Scholar 

  22. Hasugawa, T., & Kuroda, M. (1989). Japan Journal of Clinical Pathology, 37, 1020–1027.

    Google Scholar 

  23. Lins, K., Bezerra, D. P., Alves, A. P. N. N., Alencar, N. M. N., Lima, M. W., Torres, V. M., Farrias, W. R., Pessoa, C., De Moraes, M. O., & Costo-Lotufo, L. V. (2008). Journal of Applied Toxicology, 29, 20–26.

    Article  Google Scholar 

  24. Anandan, R., Priya, M. S., Devi, K. P., & Devaki, T. (1999). Medical Science Research, 27, 127.

    Google Scholar 

  25. Mc Intyre, N., & Rosalki, S. (1992). Biochemical investigations in the management of liver disease. In J. Prieto, J. Rodes, & D. A. Shafriz (Eds.), Hepatobiliary diseases (pp. 39–71). Berlin: Springer.

    Chapter  Google Scholar 

  26. Strasak, A. M., Rapp, K., Hilbe, W., Oberaigner, W., Ruttmann, E., Cocine, H., Diem, G., Pfeiffer, K. P., & Ulmer, H. (2007). Annals of Oncology, 18(11), 1893–1897.

    Article  CAS  Google Scholar 

  27. Dongre, S. H., Badami, S., & Godavarthi, A. (2008). Phytotherapy Research, 22, 23–29.

    Article  Google Scholar 

  28. Mohamed, H. A., El-Sayed, I. H., & Moawad, M. (2010). Natural Science, 8(6), 80–86.

    Google Scholar 

  29. Radak, Z., Taylor, A. W., Ohno, H., & Goto, S. (2001). Exercise Immunology Review, 7, 90–107.

    CAS  Google Scholar 

  30. Senthilnathan, P., Magesh, V., Padmavathi, R., & Sakthisekaran, D. (2002). Biomedical, 22, 83–88.

    CAS  Google Scholar 

  31. Wyllie, A. H. (1980). Nature, 284, 555–556.

    Article  CAS  Google Scholar 

  32. Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). British Journal of Cancer, 26, 239–257.

    Article  CAS  Google Scholar 

  33. Wyllie, A. H., Kerr, J. F., & Currie, A. R. (1980). International Review of Cytology, 68, 251–306.

    Article  CAS  Google Scholar 

  34. Sellins, K. S., & Cohen, J. J. (1987). Journal of Immunology, 139, 3199–3206.

    CAS  Google Scholar 

  35. Kaufmann, S. H. (1989). Cancer Research, 48, 5870–5878.

    Google Scholar 

  36. Yanagisawa-Shiota, F., Sakagami, H., Kuribayashi, N., Lida, M., Sakagami, T., & Takeda, M. (1995). Anti-cancer Research, 15, 259–265.

    CAS  Google Scholar 

  37. Koukourakis, M., Giatromanolaki, A., & Sivridis, E. (2003). Tumour Biology, 24, 199–202.

    Article  CAS  Google Scholar 

  38. Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Cancer Cell, 9, 425–434.

    Article  CAS  Google Scholar 

  39. Jaroszewski, J. W., Kaplan, O., & Cohen, J. S. (1990). Cancer Research, 50, 6936–6943.

    CAS  Google Scholar 

  40. Coyle, T., Levante, S., Shetler, M., & Wintield, J. (1994). Journal of Neuro-Oncology, 19, 25–35.

    Article  CAS  Google Scholar 

  41. Christofk, H. R., Heiden, M. G. V., Harris, M. H., Ramanathan, A., Gerszten, R. E., & Wei, R. (2008). Nature, 452, 230–233.

    Article  CAS  Google Scholar 

  42. Trigun, S. K., Koiri, R. K., Mishra, L., Dubey, S., Singh, S., & Pandey, P. (2007). Current Enzyme Inhibition, 3, 243–253.

    Article  CAS  Google Scholar 

  43. Prasad, S. B., & Giri, A. (1999). Cytologia (Tokyo), 64, 259–267.

    Article  CAS  Google Scholar 

  44. Stefanini, M. (1985). Cancer, 55, 1931–1936.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We, the authors, are thankful to our Secretary and Joint Secretary of Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India for providing the facilities and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kalaivani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalaiselvi, M., Narmadha, R., Ragavendran, P. et al. Chemopreventive Effect and HPTLC Fingerprinting Analysis of Jasminum sambac (L.) Ait. Extract Against DLA-Induced Lymphoma in Experimental Animals. Appl Biochem Biotechnol 169, 1098–1108 (2013). https://doi.org/10.1007/s12010-012-0045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0045-6

Keywords

Navigation