Skip to main content
Log in

Bacteriocin PJ4 Active Against Enteric Pathogen Produced by Lactobacillus helveticus PJ4 Isolated from Gut Microflora of Wistar Rat (Rattus norvegicus): Partial Purification and Characterization of Bacteriocin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The increase of multidrug-resistant pathogens and the restriction on the use antibiotics due to its side effects have drawn attention to the search for possible alternatives. Bacteriocins are small antimicrobial peptides produced by numerous bacteria. Much interest has been focused on bacteriocins because they exhibit inhibitory activity against pathogens. Lactic acid bacteria possess the ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this study, an antibacterial substance (bacteriocin PJ4) produced by Lactobacillus helveticus PJ4, isolated from rat gut microflora, was identified as bacteriocin. It was effective against wide assay of both Gram-positive and Gram-negative bacteria involved in various diseases, including Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus. The antimicrobial peptide was relatively heat-resistant and also active over a wide pH range of 2–10. It has been partially purified to homogeneity using ammonium sulfate precipitation and size exclusion chromatography and checked on reverse-phase high-performance liquid chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis of bacteriocin PJ4 purified through size exclusion chromatography resolved ~6.5 kDa protein with bacteriocin activity. The peptide is inactivated by proteolytic enzymes, trypsin, and lipase but not when treated with catalase, α-amylase, and pepsin. It showed a bactericidal mode of action against the indicator strains E. coli MTCC443, Lactobacillus casei MTCC1423, and E. faecalis DT48. Such characteristics indicate that this bacteriocin may be a potential candidate for alternative agents to control important pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Culligan, E. P., Hill, C., & Sleator, R. D. (2009). Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut pathogens, 1(19), 1–12.

    Google Scholar 

  2. Ballal, M., & Shivananda, P. G. (2002). Rotavirus and enteric pathogens in infantile diarrhoea in Manipal, South India. Indian Journal of Pediatrics, 69(5), 393–396.

    Article  Google Scholar 

  3. Fuller, R. (1991). Probiotics in human medicine. Gut, 32(4), 439–442.

    Article  CAS  Google Scholar 

  4. Ahmed, F. E. (2003). Genetically modified probiotics in foods. Trends in Biotechnology, 21, 491–497.

    Article  CAS  Google Scholar 

  5. Beshkova, D., & Frengova, G. (2012). Bacteriocins from lactic acid bacteria: microorganisms of potential biotechnological importance for the dairy industry. Engineering in Life Sciences, 12(4), 1–14.

    Google Scholar 

  6. Hassan, M., Kjos, M., Nes, I. F., Diep, D. B., & Lotfipour, F. (2012). Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. Journal of Applied Microbiology, 113(4), 723–736.

    Article  CAS  Google Scholar 

  7. O'Shea, E. F., Cotter, P. D., Stanton, C., Ross, R. P., & Hill, C. (2012). Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. International Journal of Food Microbiology, 152(3), 189–205.

    Article  Google Scholar 

  8. Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Review, 12, 39–86.

    CAS  Google Scholar 

  9. Reid, G., & Burton, J. (2002). Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes and Infection, 4, 319–324.

    Article  Google Scholar 

  10. Servin, A. L. (2004). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiology Reviews, 28(4), 405–440.

    Article  CAS  Google Scholar 

  11. Spinler, J. K., Taweechotipatr, M., Rognerud, C. L., Ou, C. N., Tumwasorn, S., & Versalovic, J. (2008). Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe, 14(3), 166–171.

    Article  CAS  Google Scholar 

  12. De Vuyst, L., & Vandamme, E. J. (1994). Bacteriocins of lactic acid bacteria: Microbiology, genetics and applications. In L. de Vuyst & E. J. Vandamme (Eds.), Lactic acid bacteria and bacteriocins: their practical importance (pp. 1–11). London, United Kingdom London: Blackie Academic and Professional.

    Chapter  Google Scholar 

  13. Gong, H. S., Meng, X. C., & Wang, H. (2010). Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food Control, 21, 89–96.

    Article  CAS  Google Scholar 

  14. Heu, S., Oh, J. H., Kang, Y. S., Ryu, S., Cho, S. K., Cho, Y. S., et al. (2001). Cloning, expression, and purification of glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines 8ra. Applied and Environmental Microbiology, 67, 4105–4110.

    Article  CAS  Google Scholar 

  15. Upreti, G. C., & Hinsdill, R. D. (1975). Production and Mode of Action of Lactocin 27: bacteriocin from a Homofermentative Lactobacillus. Antimicrobial Agents and Chemotherapy, 7(2), 139–145.

    Article  CAS  Google Scholar 

  16. Joerger, M. C., & Klaenhammer, T. R. (1986). Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus. Journal of Bacteriology, 167(2), 439–446.

    CAS  Google Scholar 

  17. Schägger, H., & Von Jagow, G. (1987). Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379.

    Article  Google Scholar 

  18. Georgalaki, M. D., Berghe, E. V., Kritikos, D., Devreese, B., Beeumen, J. V., Kalantzopoulos, G., et al. (2002). Macedocin, a Food-Grade Lantibiotic Produced by Streptococcus macedonicus ACA-DC 198. Applied and Environmental Microbiology, 68(12), 5891–5903.

    Article  CAS  Google Scholar 

  19. Todorov, S. D., Prevost, H., Lebosis, M., Dousset, X., LeBlanc, J. G., de Melo, G., et al. (2011). Bacteriocinogenic Lactobacillus plantarum ST16Pa isolated from papaya (Carica papaya) — From isolation to application: characterization of a bacteriocin. Food Research International, 44, 1351–1363.

    Article  CAS  Google Scholar 

  20. Kumar, M., Tiwari, S. K., & Srivastava, S. (2010). Purification and characterization of enterocin LR/6, a new bacteriocin from Enterococcus faecium LR/6. Applied Biochemistry and Biotechnology, 160, 40–49.

    Article  CAS  Google Scholar 

  21. Todorov, S. D., & Dicks, L. M. T. (2005). Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives. Journal of Basic Microbiology, 45, 312–322.

    Article  CAS  Google Scholar 

  22. Albano, H., Todorov, S. D., Van Reenen, C. A., Hogg, T., Dicks, L. M. T., & Teixeira, P. (2007). Characterization of a bacteriocin produced by Pediococcus acidilactici isolated from “Alheira”, a fermented sausage traditionally produced in Portugal. International Journal of Food Microbiology, 116, 239–247.

    Article  CAS  Google Scholar 

  23. Todorov, S. D., Wachsman, M., Tomé, E., Dousset, X., Destro, M. T., Dicks, L. M. T., et al. (2010). Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiology, 27, 869–879.

    Article  CAS  Google Scholar 

  24. Todorov, S. D., Furtado, D. N., Saad, S. M. I., de Melo, G., & Franco, B. D. (2011). Bacteriocin production and resistance to drugs are advantageous features for Lactobacillus acidophilus La-14, a potential probiotic strain. The New Microbiologica, 34, 357–370.

    Google Scholar 

  25. Giri, S. S., Sukumaran, V., Sen, S. S., Vinumonia, J., Nazeema, B. B., & Jena, P. K. (2011). Antagonistic Activity of Cellular Components of Potential Probiotic Bacteria, Isolated from the Gut of Labeo rohita, Against Aeromonas hydrophila. Probiotics and Antimicrobial Proteins, 3, 214–222.

    Article  CAS  Google Scholar 

  26. Todorov, S., Onno, B., Sorokin, O., Chobert, J. M., Ivanova, I., & Dousset, X. (1999). Detection and characterization of a novel antibacterial substance produced by Lactobacillus plantarum ST31 isolated from sourdough. International Journal of Food Microbiology, 48, 167–177.

    Article  CAS  Google Scholar 

  27. Ray, B. (1994). Pediocins of Pediococcus species. In L. De Vuyst & E. J. Vandanme (Eds.), Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications (pp. 465–495). London: Chapman and Hall.

    Chapter  Google Scholar 

  28. Noonpakdee, W., Santivarangkna, C., Jumriangrit, P., Sonomoto, K., & Panyim, S. (2003). Isolation of nisin-producing Lactococcus lactis WNC20 strain from nham, a traditional Thai fermented sausage. International Journal of Microbiology, 81, 137–145.

    Article  CAS  Google Scholar 

  29. Goa, Y., Jia, S., Goa, Q., & Tan, Z. (2010). A novel bacteriocin with a broad inhibitory spectrum produced by Lactobacillus sake C2, isolated from traditional Chinese fermented cabbage. Food Control, 1, 76–81.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Nirma Education and Research Foundation (NERF), Ahmedabad for providing the infrastructure and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Seshadri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jena, P.K., Trivedi, D., Chaudhary, H. et al. Bacteriocin PJ4 Active Against Enteric Pathogen Produced by Lactobacillus helveticus PJ4 Isolated from Gut Microflora of Wistar Rat (Rattus norvegicus): Partial Purification and Characterization of Bacteriocin. Appl Biochem Biotechnol 169, 2088–2100 (2013). https://doi.org/10.1007/s12010-012-0044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0044-7

Keywords

Navigation